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Abstract

This paper studies the online correlated selection (OCS) problem. It was introduced by
Fahrbach, Huang, Tao, and Zadimoghaddam (2020) to obtain the first edge-weighted online
bipartite matching algorithm that breaks the 0.5 barrier. Suppose that we receive a pair of
elements in each round and immediately select one of them. Can we select with negative
correlation to be more effective than independent random selections? Our contributions are
threefold. For semi-OCS, which considers the probability that an element remains unselected
after appearing in k rounds, we give an optimal algorithm that minimizes this probability for
all k. It leads to 0.536-competitive unweighted and vertex-weighted online bipartite matching
algorithms that randomize over only two options in each round, improving the 0.508-competitive
ratio by Fahrbach et al. (2020). Further, we develop the first multi-way semi-OCS that allows
an arbitrary number of elements with arbitrary masses in each round. As an application, it
rounds the Balance algorithm in unweighted and vertex-weighted online bipartite matching
and is 0.593-competitive. Finally, we study OCS, which further considers the probability that
an element is unselected in an arbitrary subset of rounds. We prove that the optimal “level of
negative correlation” is between 0.167 and 0.25, improving the previous bounds of 0.109 and 1
by Fahrbach et al. (2020). Our OCS gives a 0.519-competitive edge-weighted online bipartite
matching algorithm, improving the previous 0.508-competitive ratio by Fahrbach et al. (2020).
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1 Introduction

Real-life optimization problems often need to make decisions based on the information at hand
instead of the full picture in hindsight. Online advertising platforms show advertisements within
milliseconds after receiving each user query. Ride hailing applications match riders and drivers
without full knowledge of future ride requests. Cloud service providers assign computational tasks to
physical servers not knowing what tasks the users may submit later. Due to the broad applications,
the design and analysis of online algorithms for these optimization problems are a central topic in
computer science and operations research.

Lacking accurate knowledge of the full picture, there is usually no universally good decision for
all possible future input in these online optimization problems. As a result, online algorithms need
to hedge against different possibilities through randomized decisions. Consider the online bipartite
matching problem by Karp, Vazirani, and Vazirani [26] as a running example. We want to find a
matching in a bipartite graph and maximize its size. Initially, we only know the left-hand-side of
the bipartite graph, a.k.a., the offline vertices. Online vertices on the right-hand-side arrive one at
a time. We must immediately and irrevocably match each of them upon arrival. Any deterministic
greedy algorithm gives a maximal matching, and therefore its size is at least half of the maximum
matching in hindsight. Beating this trivial bound of half, however, necessitates randomization even
for bipartite graphs with only two vertices on each side.

Example. Consider vertices 1 and 2 on the left and 3 and 4 on the right. Vertex 3 arrives
first with edges to both 1 and 2. A deterministic algorithm then immediately matches 3, e.g.,
to 1. If vertex 4 only has an edge to 1, however, the algorithm cannot match it even though
a perfect matching exists in hindsight. A randomized algorithm that matches 3 to 1 and 2
with equal probability, on the other hand, matches 3

2 edges in expectation.

Would it suffice to independently randomize over two offline neighbors? Unfortunately, the
answer is negative (e.g., Fahrbach, Huang, Tao, and Zadimoghaddam [18]). We need to correlate
different rounds’ selections to break the 1

2 barrier. One can introduce correlation through problem
specific methods. The Ranking algorithm of Karp et al. [26], for example, samples a random order
of the offline vertices at the beginning, and then matches each online vertex to the first unmatched
offline neighbor by that order. Ranking and its variants achieve the optimal 1 − 1

e competitive
ratio for unweighted [26] and vertex-weighted online bipartite matching [2], but have difficulties
extending to the more general edge-weighted problem (a.k.a., Display Ads) [19] and AdWords [28].

Fahrbach et al. [18], on the other hand, formulate a generic online selection problem and design
online correlated selection (OCS) algorithms that lead to the first edge-weighted online bipartite
matching algorithm that breaks the 1

2 barrier. Subsequently, Huang, Zhang, and Zhang [24] break
the 1

2 barrier in AdWords using a similar approach. The online selection problem considers a set
of ground elements (e.g., the offline vertices) and a sequence of pairs of these elements (e.g., a
pair of offline neighbors for each online vertex). The algorithm immediately selects an element
upon receiving each pair. If it independently selects a random element from each pair, then with
probability 2−k an element remains unselected in a subset of k pairs involving it. Can we be more
effective than independent random selections?

Fahrbach et al. [18] study two versions of online selection called semi-OCS and OCS. Semi-OCS
focuses on the probability that an element is unselected at the end when it is in k pairs. They
give a semi-OCS that upper bounds this probability by 2−k(1 − γ)k−1 for γ = 0.109, and call it a
γ-semi-OCS. They also prove that 1-semi-OCS is impossible. OCS further considers the probability
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that an element is unselected in an arbitrary subset of pairs involving it. When the subset is the
union of m consecutive subsequences of the pairs involving the element, with lengths k1, k2, . . . , km,
their OCS bounds the unselected probability by

∏m
i=1 2−ki(1− γ)ki−1 also for γ = 0.109. They call

it a γ-OCS. The weaker guarantee of semi-OCS is sufficient for unweighted and vertex-weighted
online bipartite matching, while the stronger guarantee of OCS is sufficient for the edge-weighted
problem. The main idea is to randomly match the pairs so that two matched pairs share a common
element that is not in any pair in between. Their semi-OCS and OCS then select oppositely from
the matched pairs with respect to the common element.

Fahrbach et al. [18] explicitly leave two open questions: (1) What is the best possible γ for which
γ-semi-OCS and γ-OCS exist? (2) Are there multi-way online selection algorithms that select from
multiple elements in each round, with sufficient negative correlation such that the resulting online
matching algorithms are better than the two-way counterparts? We remark that the matching-based
approach fails fundamentally in the multi-way extension. If each round has n elements, it can then
be matched to Ω(n) other rounds. For large n, any matching is sparse and the resulting negative
correlation is negligible.

1.1 Our Contributions

Semi-OCS and Weighted Sampling without Replacement. This paper gives a complete
answer to the first open question for semi-OCS. In fact, we not only show that the optimal γ equals
1
2 for semi-OCS, but also find that the unselected probability converges to zero much faster than
the guanrantee of γ-semi-OCS when the element is in k ≥ 3 rounds.

Informal Theorem 1. There is a polynomial-time semi-OCS such that an element that is in k
pairs is selected with probability at least 1− 2−2k+1. This is the best possible for all k ≥ 1.

In each round the optimal semi-OCS selects the element that appears more in previous rounds,
and is unselected thus far, breaking ties randomly. It is the limit case of weighted sampling without
replacement, when an element’s weight is exponential in the number of previous rounds with the
element, and when the base of the exponential tends to infinity. The main lemma in our analysis,
which may be of independent interest, shows that the selections of different elements are negatively
correlated in weighted sampling without replacement with two elements per round. See Section 3.

This paper further answers the second open question affirmatively for semi-OCS by studying a
multi-way online selection problem that allows an arbitrary marginal distribution over the elements
in each round. We will refer to the marginal probability of an element as its mass in that round.
Consider the probability that an element is unselected at the end when its total mass is y. On the
one hand, sampling independently from the marginal distributions (with replacement) bounds the
probability by exp(−y). On the other hand, for an overly idealized algorithm, which samples from
the marginal distributions and ensures that each element is sampled at most once, this probability

is max{1− y, 0}. For y ∈ [0, 1], it is exp(−y − y2

2 −
y3

3 − . . . ) by the Taylor series of ln(1− y). We
match the overly idealized bound up to the quadratic term, with a smaller cubic coefficient.

Informal Theorem 2. There is a polynomial-time multi-way semi-OCS such that an element

with total mass y is selected with probability at least 1− exp(−y − y2

2 −
4−2
√

3
3 y3).

It may be tempting to conjecture that sampling independently from the marginal distributions
without replacement already improves the trivial bound of exp(−y). Unfortunately, this is false.
Consider an element e that is in all T rounds each with mass ε = y

T , and let there be a distinct
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Table 1: A summary of the results in this paper on online correlated selection and their applications
in online bipartite matching, with a comparison to those by Fahrbach et al. [18].

Fahrbach et al. [18] This Paper

Semi-OCS1 2−k(1− 0.109)k−1 2−2k+1

Multi-way Semi-OCS2 - exp(−y − y2

2 −
4−2
√

3
3 y3)

γ-OCS 0.109 ≤ γ < 1 0.167 ≤ γ ≤ 1
4

Unweighted/Vertex-weighted (2-Way) 0.508 0.536

Unweighted/Vertex-weighted (Multi-way)3 - 0.593

Edge-weighted 0.508 0.519

1 The table presents upper bounds on the probability that an element is unselected when it is in k pairs.
2 The table presents upper bounds on the probability that an element is unselected when its total mass is y.
3 Ranking by Karp et al. [26] is 1− 1

e
-competitive which is optimal. Nonetheless, the algorithms in this paper

are the first ones other than Ranking whose competitive ratios are beyond the 0.5 + ε regime.

element other than e with mass 1− ε in each round. Then element e remains unselected at the end
with probability exp(−y) when T tends to infinity.

This example suggests that if an element has accumulated some mass and is still unselected, we
shall give it a higher priority than new elements that are not in any previous rounds. It motivates
weighted sampling without replacement where the weight is a function of the total mass of the
element in previous rounds. We choose the weight to be the inverse of the upper bound on the
unselected probability so that the expected sampling weight of any element is at most its mass in
the round, an invariant that is the key to our analysis. See Section 4.

OCS and Probabilistic Automata. This paper also contributes to the first open question for
OCS by narrowing the gap between the upper and lower bounds on the best possible γ.

Informal Theorem 3. There is a polynomial-time 0.167-OCS. Further, there is no γ-OCS for
any γ > 1

4 , even with unlimited computational power.

The improved OCS also abandons the matching-based approach and instead introduces an
automata-based approach. Informally, it picks an element from each round to probe the element’s
state. If the element was selected last time, select the other element this time. If the element has
not been selected in the last two appearances, select it this time. Finally, only when the element
was not selected last time but was selected before that, the OCS selects with fresh randomness. The
actual algorithm is more involved. For example, we cannot pick an element to probe independently
in each round in general. See Section 5 for detail.

Applications in Online Bipartite Matching. The new results on online correlated selection
from this paper lead to better online bipartite matching algorithms. For the unweighted and
vertex-weighted problems, we get a 0.536-competitive two-way algorithm, improving the 0.508-
competitive algorithm by Fahrbach et al. [18]. We further show that the multi-way semi-OCS can
round the (fractional) Balance algorithm (e.g., [25, 28]), and be 0.593-competitive. For the edge-
weighted problem, the 0.167-OCS gives a 0.512-competitive algorithm. In the process, we refine
the reductions from online matching problems to online correlated selection so that the competitive
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ratios admit close-formed expressions, and a guarantee strictly weaker than γ-OCS already suffices
for the edge-weighted problem. Motivated by the relaxed guarantee, we design a variant of OCS
that further improves the edge-weighted competitive ratio. See Section 6.

Informal Theorem 4. There is a polynomial-time 0.519-competitive algorithm for edge-weighted
online bipartite matching.1

1.2 Other Related Works

Online Rounding. Online correlated selection is related to online rounding algorithms. It is
common to first design online algorithms for an easier fractional online optimization problem, and
to round it using online rounding algorithms to solve the original integral problem. Independent
rounding is the simplest and most general online rounding; it corresponds to independent random
selections in the online selection problem in this paper. For instance, Buchbinder and Naor [6]
first design fractional online covering and packing algorithms under the online primal-dual frame-
work, and then round them with independent rounding. More involved online rounding algorithms
are usually designed on a problem-by-problem basis in the literature, e.g., for k-server [4], online
submodular maximization [8], online edge coloring [10], etc.

To our knowledge, the only general online rounding method other than independent rounding is
the online contention resolution schemes initiated by Feldman et al. [20] and further developed by
Adamczyk and W lodarczyk [1], Lee and Singla [27], and Dughmi [14, 15]. It has found applications
mainly in online problems with stochastic information, such as prophet inequality [17, 20], posted
pricing [20], stochastic probing [20], and stochastic matching [17, 21, 22].

There is an important difference between the above usages of online rounding algorithms and the
applications of OCS in online bipartite matching. The above online rounding algorithms and the
corresponding fractional online algorithms are designed separately; the final competitive ratio is the
product of their ratios.2 By contrast, this paper and previous works on OCS [18, 24] take an end-
to-end approach: the online matching algorithms make fractional decisions based on the guarantee
of OCS to directly optimize the expected objective of the rounded matching. For example, the
algorithms for vertex-weighted and edge-weighted matching in Section 6 rely on discount functions
derived from optimization problems that take the OCS guarantees as parameters. Another example
with a similar spirit is the convex rounding technique by Dughmi et al. [16] and Dughmi [13] from
the algorithmic game theory literature.

Online Matching. We refer readers to Mehta et al. [29] for a survey on online matching problems.
The unweighted, vertex-weighted, and edge-weighted online bipartite matching problems are first
studied by Karp et al. [26], Aggarwal et al. [2], and Feldman et al. [19]. Later, Devanur et al. [11] and
Devanur et al. [12] simplify the analyses under the online primal-dual framework. In particular,
Devanur et al. [12] view the expected maximal edge-weight matched to an offline vertex as an
integral of the complementary cumulative distribution function, a key ingredient of the application
of OCS in edge-weighted matching. Finally, Buchbinder et al. [7], Cohen and Wajc [9], Gamlath
et al. [23], Papadimitriou et al. [30], and Saberi and Wajc [31] also build on negative correlation
properties to analyze their online algorithms, although these negative correlation properties and
their usage are orthogonal to those in this paper.

1We assume free disposals, which is standard in the edge-weighted problem under worst-case analysis.
2Using this two-step approach to analyze the applications of the multi-way semi-OCS in this paper in unweighted

and vertex-weighted online bipartite matching would lead to a much worse competitive ratio of about 0.514. Using
it with the (two-way) semi-OCS and OCS even gives a ratio strictly smaller than 0.5!
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1.3 Concurrent Works

Concurrently and independently, Blanc and Charikar [5] and Shin and An [32] also improved the
results of Fahrbach et al. [18]. They mainly study multi-way OCS, while this paper focuses on 2-way
semi-OCS, 2-way OCS, and multi-way semi-OCS. Hence, these two papers are almost orthogonal
to ours. Using a 6-way OCS, Blanc and Charikar [5] obtained a 0.5368-competitive algorithm for
edge-weighted online bipartite matching. They also gave similar simplifications for the reduction
of online matching problems to OCS. Shin and An [32] gave a method for converting 2-way OCS
to 3-way OCS. Applying their method to the OCS of Fahrbach et al. [18] gives a 0.509-competitive
algorithm for edge-weighted online bipartite matching. Applying it to the improved 2-way OCS in
this paper further improves the ratio to 0.513.

2 Preliminaries

The online selection problem considers a set E of elements and a selection process that proceeds in
T rounds. For any round 1 ≤ t ≤ T , a pair of elements E t arrive and the online selection algorithm
needs to immediately select an element from E t. Let st denote the selected element in round t.

For any subset of rounds T ′ ⊆ T , we say that an element e is unselected in T ′ if the algorithm
does not select the element in any round in T ′, i.e., if st 6= e for any t ∈ T ′. If T ′ = T , we simply
say that element e is unselected. For any 0 ≤ t ≤ T , let U t denote the set of elements that are
unselected in rounds 1, 2, . . . , t. Let U = UT denote the set of unselected elements at the end.

Semi-OCS considers the probability that an element e ∈ E is unselected at the end, and seeks
to bound it as a function of the number rounds containing element e.

Definition 1 (γ-semi-OCS, c.f., Fahrbach et al. [18]). An online selection algorithm is a γ-semi-
OCS if for any online selection instance and any element e that appears in k rounds, element e is
unselected with probability at most:

2−k(1− γ)k−1 .

Selecting an element in each round independently and uniformly at random is a 0-semi-OCS.
Fahrbach et al. [18] give a 0.109-semi-OCS and prove that there is no 1-semi-OCS.

OCS further considers the probability that an element e ∈ E is unselected in an arbitrary subset
of rounds containing the element. The upper bounds on this probability depend on the structure
of the subset of rounds. A consecutive subsequence of the rounds containing element e is a subset
of rounds {t1, t2, . . . , tk} such that each round ti contains e, i.e., e ∈ E ti for any 1 ≤ i ≤ k, and no
round in between contains e, i.e., e /∈ E t for any 1 ≤ i ≤ k − 1 and any ti < t < ti+1.

Definition 2 (γ-OCS, c.f., Fahrbach et al. [18]). An online selection algorithm is a γ-OCS if
for any online selection instance, any element e, and any subset of rounds T ′ ⊆ T containing e
such that T ′ is the union of m consecutive subsequences of the rounds containing e, with lengths
k1, k2, . . . , km, element e is unselected in T ′ with probability at most:

m∏
i=1

2−ki(1− γ)ki−1 .

For example, suppose that rounds 1, 2, 5, 6, 9 are the ones that contain element e, and consider
T ′ = {1, 2, 6, 9}. Then, T ′ is the union of two consecutive subsequences 1, 2 and 6, 9, whose lengths
are 2. Fahrbach et al. [18] give a 0.109-OCS. Since OCS is stronger than semi-OCS, the impossibility
result for semi-OCS implies that there is no 1-OCS.

5



3 Optimal Semi-OCS

3.1 Algorithms

This paper considers a semi-OCS that remembers the number of rounds involving each element thus
far, and selects from each round the element that appears more and is unselected so far, breaking
ties uniformly at random and independently in different rounds. See Algorithm 1.

Algorithm 1 Optimal Semi-OCS

State variables: (for each element e)

• The number of previous rounds that contain element e, denoted as ke.

• Whether element e has been selected in any previous rounds.

For each round t: (suppose E t = {e, e′})
1. If both e and e′ have been selected, select arbitrarily, e.g., st ∈ {e, e′} uniformly at random.

2. If only one of e and e′ has been selected, select st to be the one that has not been selected.

3. If neither e nor e′ has been selected:

• If ke 6= ke′ , select st to be the one with more previous appearances.

• Otherwise, select st ∈ {e, e′} uniformly at random.

The main lemma in the analysis of Algorithm 1 will prove that the (un)selections of elements are
negatively correlated. It is more instructive to prove this lemma for a broader family of weighted
sampling algorithms (Algorithm 2). Algorithm 1 is the special case when we let wte = 1 if e appears
in previous rounds at least as many times as the other element does, and let wte = 0 otherwise.

Algorithm 2 Weighted 2-Way Sampling without Replacement

Parameters:

• wte ≥ 0, weight of element e ∈ E t in round t

For each round t:

1. If both elements in E t have been selected, select arbitrarily, e.g., uniformly at random.

2. Otherwise, select each unselected element e ∈ E t with probability proportional to wte.

3.2 Negative Correlation in Weighted 2-Way Sampling without Replacement

Recall that U t denotes the set of unselected elements after the first t rounds. Hence the event that
a subset S ⊆ E of elements are all unselected after the first t rounds can be written as S ⊆ U t. We
shall establish the negative correlation of such events in the next lemma.

Lemma 1. For weighted 2-way sampling (Algorithm 2) with any weights, any 0 ≤ t ≤ T , and any
disjoint subsets of elements A,B ⊆ E:

Pr
[
A ∪B ⊆ U t

]
≤ Pr

[
A ⊆ U t

]
Pr
[
B ⊆ U t

]
.

Proof. We shall prove the lemma by induction on t. The base case when t = 0 is trivial since
U0 = E , and thus Pr

[
A ⊆ U0

]
= Pr

[
B ⊆ U0

]
= Pr

[
A ∪ B ⊆ U0

]
= 1. Next suppose that the

lemma holds for round t− 1 and consider round t.
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Case 1: E t ∩ (A ∪ B) = ∅, i.e., no element in this round belongs to A or B. Since the selection
in round t does not affect the events of concern, the lemma continues to hold after round t by the
inductive hypothesis.

Case 2:
∣∣E t ∩ (A ∪ B)

∣∣ = 1, i.e., exactly one element in this round belongs to A or B. Denote
this element as e ∈ E t and the other element as e′ ∈ E t. Further suppose without loss of generality
that e ∈ A. Since the elements in B are not involved in round t, we have:

Pr
[
B ⊆ U t

]
= Pr

[
B ⊆ U t−1

]
.

Next consider the elements in A. If e′ has been selected in the first t − 1 rounds, e would
certainly be selected after round t. Hence, to have A ⊆ U t, we need not only A ⊆ U t−1, but also
e′ ∈ U t−1. Further the algorithm must select e′ in round t. Putting together we have:

Pr
[
A ⊆ U t

]
= Pr

[
A ∪ {e′} ⊆ U t−1

] wte′

wte + wte′
.

Similarly we have:

Pr
[
A ∪B ⊆ UT

]
= Pr

[
A ∪B ∪ {e′} ⊆ U t−1

] wte′

wte + wte′
.

Cancelling the common term
wt

e′
wt

e+wt
e′

, the inequality in the lemma is equivalent to:

Pr
[
A ∪B ∪ {e′} ⊆ U t−1

]
≤ Pr

[
A ∪ {e′} ⊆ U t−1

]
Pr
[
B ⊆ U t−1

]
.

This follows by the inductive hypothesis for subsets A ∪ {e′} and B in round t− 1.

Case 3: E t ⊆ (A∪B), i.e., both elements in round t belong to A or B. Since one element in E t is
selected in round t, we have Pr[A ∪B ⊆ U t] = 0. Hence the stated inequality trivially holds.

We remark that the lemma no longer holds if we have 3 or more elements in each round.
Appendix A.1 provides a counter-example. See also Alexander [3].

3.3 Analysis

Theorem 2. For any instance and any element that appears in k rounds, the probability that the
element is never selected by Algorithm 1 is at most:

2−2k+1 .

Proof. We shall prove the theorem by induction on the number of rounds T in the instance. The
base case when T = 0 is trivial since k must be 0 in this case. Next suppose that the lemma holds
for up to T − 1 rounds. Consider an arbitrary instance with T rounds, and any element e that
appears k times. Without loss of generality, we may assume that e is in the last round T ; otherwise
it follows directly from the inductive hypothesis. Further suppose that the other element in round
T is e′. Consider three cases depending on the relation between the number of appearances ke and
ke′ before round T . Observe that k = ke + 1.

Case 1: ke > ke′ . By the definition of Algorithm 1, element e is selected with certainty after T .
Hence the probability of concern is 0, and is trivially smaller than the stated bound.
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Case 2: ke < ke′ . By the definition of Algorithm 1, element e′ is selected with certainty in round
T if it is not yet selected previously. Hence, element e is never selected by the algorithm at the end
if and only if both e and e′ are unselected before round T . This probability is:

Pr
[
{e, e′} ⊆ UT−1

]
≤ Pr

[
e ∈ UT−1

]
Pr
[
e′ ∈ UT−1

]
(Lemma 1)

≤ 2−2ke+1 · 2−2ke′+1 (Inductive hypothesis)

≤ 2−2ke+1 · 2−2ke+1+1 (ke < ke′)

≤ 2−2k+1 . (k = ke + 1)

Case 3: ke = ke′ . By the definition of Algorithm 1, elements e and e′ would be selected with
equal probability if neither has been selected before. Therefore, element e is never selected by the
algorithm at the end if and only if both e and e′ are unselected before round T , and the algorithm
selects e′ in round T . The latter happens with probability half and is independent with the former.
Hence, this probability is:

2−1Pr
[
{e, e′} ⊆ UT−1

]
≤ 2−1Pr

[
e ∈ UT−1

]
Pr
[
e′ ∈ UT−1

]
(Lemma 1)

≤ 2−1 · 2−2ke+1 · 2−2ke′+1 (Inductive hypothesis)

≤ 2−1 · 2−2ke+1 · 2−2ke+1 (ke = ke′)

= 2−2k+1 . (k = ke + 1)

Summarizing the three cases completes the inductive step and thus the proof of the theorem.

Since 2−2k+1 ≤ 2−2k+1 = 2−k(1− 1
2)k−1, Theorem 2 leads to the following corollary in terms of

the original definition of semi-OCS.

Corollary 3. Algorithm 1 is a 1
2 -semi-OCS.

We remark that the guarantee of 1
2 -semi-OCS only gives an 8

15 ≈ 0.533-competitive algorithm
for unweighted and vertex-weighted matching, while Theorem 2 leads to least 0.536. That is, the
tighter analysis in Theorem 2 indeed results in better competitive ratios in online matching.

3.4 Hardness

Finally, we show that the semi-OCS (Algorithm 1) and its analysis (Theorem 2) are optimal for all
k simultaneously. The proof is deferred to Appendix A.2.

Theorem 4. For any algorithm and any k ≥ 0, there is an instance and an element that appears
in k rounds, such that with probability at least 2−2k+1 the algorithm never selects the element.

The special case of k = 2 further implies a hardness for the original definition of γ-semi-OCS.

Corollary 5. There is no γ-semi-OCS for γ > 1
2 .

4 Multi-way Semi-OCS

4.1 Definitions

The multi-way online selection problem considers a set of elements E and a selection process that
proceeds in T rounds as follows. Each round 1 ≤ t ≤ T is associated with a non-negative vector

8



Algorithm 3 Multi-way Semi-OCS: Weighted Sampling without Replacement

Parameters:

Non-decreasing weight function w : [0,+∞)→ [1,+∞) such that w(0) = 1.

Our result lets w(y) = exp
(
y + y2

2 + cy3
)

where c = 4−2
√

3
3 .

State variables: (for each element e)

• Cumulative mass yte of element e up to any round t.

• Whether element e has been selected in any previous rounds.

For each round t:

1. If all elements in E t have been selected, select arbitrarily, e.g., uniformly at random.

2. Otherwise, select an unselected e ∈ E t with probability proportional to xte · w(yt−1
e ).

xt = (xte)e∈E such that
∑

e∈E x
t
e = 1. We shall refer to xte as the mass of element e in round t. The

vectors are unknown at the beginning and are revealed to an multi-way online selection algorithm
at the corresponding rounds. Let E t = {e : xte > 0} be the set of elements with positive masses
in round t, i.e., those that may be selected in the round. Upon observing the mass vector xt for
round t, the algorithm selects an element from E t.

We may interpret xte as the probability of selecting element e in the round if none of the elements
have appeared in previous rounds, although in general the correlation introduced by the multi-way
online selection algorithms will complicate the selection probabilities. For any 0 ≤ t ≤ T , let
yte =

∑
t′≤t x

t′
e be the cumulative mass of element e in the first t rounds. Let ye = yTe be its total

mass in the instance for brevity.

Definition 3 (p-Multi-way Semi-OCS). A multi-way online selection algorithm is a p-multi-way
semi-OCS for a non-increasing function p : [0,+∞) → [0, 1] if for any multi-way online selection
instance and any element e, e is unselected with probability at most p(ye).

4.2 Algorithm: Weighted Sampling without Replacement

We consider weighted sampling without replacement, which is parameterized by a weight function
w : [0,+∞) → [1,+∞) with w(0) = 1. In each round t, the sampling weight of an element e ∈ E t
equals 0 if the element has already been selected in the previous rounds, and equals xtew(yt−1

e )
otherwise. See Algorithm 3.

We remark that the optimal (2-way) semi-OCS in Section 3 can be interpreted as the limit case
when w(y) = W y and W tends to infinity.

4.3 Analysis

Theorem 6. Weighted Sampling without Replacement (Algorithm 3) with weight function:

w(y) = exp
(
y +

y2

2
+ cy3

)
(1)

where c = 4−2
√

3
3 ≈ 0.179 is a p-multi-way semi-OCS for:

p(y) =
1

w(y)
= exp

(
− y − y2

2
− cy3

)
.
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Consider an overly idealized algorithm which selects each element e in round t with probability
exactly xte and never selects any element more than once. It would be a p∗-multiway semi-OCS for
p∗(y) = max{1− y, 0}. By the Taylor series of log(1− y) for 0 ≤ y < 1, it can be written as:

p∗(y) = exp
(
−
∞∑
i=1

yi

i

)
.

The guarantee of Theorem 6 matches the overly idealized bound up to the quadratic term and
has a smaller coefficient for the cubic term.

First, we prove some properties about the weight function w in Eqn. (1).

Lemma 7. For any 0 ≤ x < 1 and any y ≥ 0:

w(y + x)

w(y)
≤ x

1− x
w(y) + 1 .

The proof of Lemma 7 involves tedious calculations and computer-aided numerical verifications
that are not insightful. Hence, we defer it to Appendix B.1; see also Appendix B.3 for a proof that
does not use computer-aided numerical verifications for a weaker version of the lemma. We further
introduce a generalized version of Lemma 7 whose proof is also deferred to Appendix B.2.

Lemma 8. For any k ≥ 1, any xi, yi ≥ 0 for 1 ≤ i ≤ k such that
∑k

i=1 xi ∈ [0, 1]:

1−
∑k

i=1 xi∑k
i=1 xiw(yi) + 1−

∑k
i=1 xi

≤
k∏
i=1

w(yi)

w(yi + xi)
.

With these two lemmas, we bound the unselected probability for any subset of elements, which
implies Theorem 6 as a special case.

Theorem 9. Weighted Sampling without Replacement (Algorithm 3) with weight function

w(y) = exp

(
y +

y2

2
+ cy3

)
with c = 4−2

√
3

3 ensures that any subset of elements E ′ ⊆ E are unselected with probability at most:∏
e∈E ′

p(ye) ,

where p(y) = 1
w(y) .

Proof. Recall that U t denotes the set of unselected elements after round t. Hence, E ′ ⊆ U t is the
event that the elements in E ′ are unselected in the first t rounds. We shall prove by induction on
0 ≤ t ≤ T that:

Pr
[
E ′ ⊆ U t

]
≤
∏
e∈E ′

p(yte) ,

which implies Theorem 9 as a special case when t = T .
The base case when t = 0 holds vacuously because both sides of the inequality equal 1.
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Next suppose that it holds for t−1 rounds for some t > 0, and consider the case of t rounds. Let
X̄t
e be the indicator of whether element e is unselected after round t, and define X̄t

E ′ =
∏
e∈E ′ X̄

t
e

for any E ′ ⊆ E . Finally, we write X̄t for (X̄t
e)e∈E .

Pr
[
E ′ ⊆ U t

]
= E X̄t

E ′

= EX̄t−1

[
X̄t−1
E ′

(
1−

∑
e∈E ′ w(yt−1

e )xteX̄
t−1
e∑

e∈E w(yt−1
e )xteX̄

t−1
e

)]
.

Here we artificually define 0
0 = 0 for ease of presentation. Readers may verify that our argument

stays true with this caveat.
Next, multiply X̄t−1

E ′ with both the numerator and denominator in the above fraction. Using
that Y 2 = Y for Y ∈ {0, 1}, we have:

Pr
[
E ′ ⊆ U t

]
= EX̄t−1

[
X̄t−1
E ′

(
1−

∑
e∈E ′ w(yt−1

e )xteX̄
t−1
E ′∑

e∈E ′ w(yt−1
e )xteX̄

t−1
E ′ +

∑
e6∈E ′ w(yt−1

e )xteX̄
t−1
E ′∪{e}

)]

= EXt−1

[
X̄t−1
E ′
∑

e6∈E ′ w(yt−1
e )xteX̄

t−1
E ′∪{e}∑

e∈E ′ w(yt−1
e )xteX̄

t−1
E ′ +

∑
e6∈E ′ w(yt−1

e )xteX̄
t−1
E ′∪{e}

]
.

By the concavity of f(x, y) = xy
x+y , it follows from Jensen’s inequality that:

Pr
[
E ′ ⊆ U t

]
≤

EX̄t−1
E ′
∑

e 6∈E ′ w(yt−1
e )xte EX̄t−1

E ′∪{e}∑
e∈E ′ w(yt−1

e )xte EX̄t−1
E ′ +

∑
e6∈E ′ w(yt−1

e )xte EX̄t−1
E ′∪{e}

.

By the inductive hypothesis and the monotonicity of f(x, y) = xy
x+y , we further get that:

Pr
[
E ′ ⊆ U t

]
≤

∏
e∈E ′ p(y

t−1
e )

∑
e6∈E ′ w(yt−1

e )xte
∏
e′∈E ′∪{e} p(y

t−1
e′ )∑

e∈E ′ w(yt−1
e )xte

∏
e∈E ′ p(y

t−1
e ) +

∑
e6∈E ′ w(yt−1

e )xte
∏
e′∈E ′∪{e} p(y

t−1
e′ )

=
∏
e∈E ′

p(yt−1
e )

∑
e 6∈E ′ w(yt−1

e )xtep(y
t−1
e )∑

e∈E ′ w(yt−1
e )xte +

∑
e6∈E ′ w(yt−1

e )xtep(y
t−1
e )

=
∏
e∈E ′

p(yt−1
e )

∑
e 6∈E ′ x

t
e∑

e∈E ′ w(yt−1
e )xte +

∑
e6∈E ′ x

t
e

.

Next combine the above with Lemmas 7 and 8:

Pr
[
E ′ ⊆ U t

]
≤

1−
∑

e∈E ′ x
t
e∑

e∈E ′ x
t
ew(yt−1

e ) + 1−
∑

e∈E ′ x
t
e

∏
e∈E ′

p(yt−1
e ) (

∑
e∈E x

t
e = 1)

≤
∏
e∈E ′

w(yt−1
e )

w(yt−1
e + xte)

∏
e∈E ′

p(yt−1
e ) (Lemmas 7 and 8)

=
∏
e∈E ′

p(yt−1
e + xte). (p(y) = 1

w(y))
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1

E1 = {a, c}
2

E2 = {b, d}
3

E3 = {a, b}
4

E4 = {a, c}
5

E5 = {b, c}
6

E6 = {b, c}

Figure 1: Example of ex-ante dependence graph

5 Improved Algorithms and Hardness for OCS

5.1 Definitions

Recall that an online selection algorithm is a γ-OCS, if for any (2-way) online selection instance,
any element e, and any disjoint consecutive subsequences of the rounds involving e with lengths
k1, k2, · · · , km respectively, the probability that e is unselected in these rounds is at most:

m∏
`=1

2−k`(1− γ)k`−1 .

Definition 4 (Ex-ante Dependence Graph, c.f., Fahrbach et al. [18]). The ex-ante dependence
graph Gex-ante = (V,Eex-ante) is a directed graph defined with respect to an online selection instance.
We shall refer to its vertices and edges as nodes and arcs to make a distinction with those in online
matching problems. The nodes correspond to rounds:

V =
{

1, 2, . . . , T
}
.

The arcs correspond to neighboring appearances of an element (indicated by the subscript3):

Eex-ante =
{(
t, t′
)
e

: t < t′; e ∈ E t; e ∈ E t′ ; ∀t < t′′ < t′, e /∈ E t′′
}
.

See Figure 1 for an illustrative example of the ex-ante dependence graph.

5.2 Roadmap

5.2.1 Matching-based Approach versus Automata-based Approach on a Path

This subsection reviews the matching-based approach of Fahrbach et al. [18] and its limitation, and
explains the automata-based approach in this paper. As a running example, consider an instance
with the same two elements head (H) and tail (T) in every round, and thus the ex-ante dependence
graph is a directed path (more precisely, two identical parallel directed paths).

Matching-based Approach. Fahrbach et al. [18] propose to select a matching from the ex-ante
graph, and then to select elements in each pair of matched nodes and in each isolated node with
independent random bits; each pair of matched nodes shall select the opposite elements. We shall
select the matching such that 1) the selections of different arcs are negatively dependent (including
independent), and 2) the probability of selecting each arc is as high as possible. If we could select the
arcs each with probability at least β with negative dependence, we would obtain a β-OCS because

3There could be parallel arcs in the ex-ante dependence graph, e.g., when rounds t and t′ = t+ 1 have the same
two elements. The subscript helps distinguish such parallel arcs.
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of the following argument. For any disjoint consecutive subsequences of lengths k1, k2, . . . , km, they
contain

∑m
i=1(ki−1) arcs that could have been selected into the matching. If we select at least one

of them into the matching, the opposite selections in its two nodes ensure selecting both elements.
By the aforementioned properties, the matching has none of these arcs with probability at most
(1− β)

∑m
i=1(ki−1). Even in that case, we still have

∑m
i=1 ki independent selections in these rounds;

the probability of not selecting a given element in them is at most 2−
∑m

i=1 ki .
For example, Fahrbach et al. [18] let each node independently pick an incident arc, and then

select an arc into the matching if both nodes pick it. This selects each arc with probability 1
4 in

the special case when the ex-ante graph is a directed path. It is possible to improve in the special
case. For instance, we could let each arc independently sample a number uniformly from [0, 1] and
select an arc if its number is bigger than its neighbors’. This selects each arc with probability 1

3 .
To our best effort, however, we cannot find any matching-based algorithm that selects each arc

with probability more than
√

5−1
2 ≈ 0.382. Further, some of these ideas that improve the 1

4 bound
by the algorithm of Fahrbach et al. [18] fail to generalize beyond the special case.

Automata-based Approach. This paper introduces a different approach that selects elements
using a probabilistic automaton. We shall refer to both this automaton and its transition function
as σ∗. It has five states qO, qH, qH2 , qT, and qT2 . The original state qO is both the initial state of
the automaton and the state it resets to after selecting the same element in two consecutive rounds.
State qH (resp., qT) means that the automaton selects H (resp., T) in the previous round but not
twice in a roll; from this state the automaton selects T (resp., H) with a higher chance, and the
margin β ∈ [0, 1] will be optimized to be β =

√
2− 1 in our analysis. State qH2 (resp., qT2) means

that the automaton selects H (resp, T) in the last two rounds; from this state the automaton will
select T (resp., H) with certainty and resets to the original state O. Below is the transition function
σ∗ that takes a state as input and returns a state and an element from

{
H,T

}
(see also Figure 2):

σ∗(qO) =

{(
qH,H

)
w.p. 1

2(
qT,T

)
w.p. 1

2

, σ∗(qH) =

{(
qH2 ,H

)
w.p. 1−β

2(
qT,T

)
w.p. 1+β

2

, σ∗(qT) =

{(
qH,H

)
w.p. 1+β

2(
qT2 ,T

)
w.p. 1−β

2

,

σ∗(qH2) =
(
qO,T

)
, σ∗(qT2) =

(
qO,H

)
.

We find that using this automaton to select elements in different rounds is a (
√

2− 1)-OCS in
the special case. Readers will find the proof of a stronger claim in Subsection 5.4. This is strictly
better than our best effort using the matching-based approach. More importantly, it generalizes to
arbitrary online selection instances using the techniques in the rest of the section.

5.2.2 Automata-based Approach

This subsection outlines how to generalize the automata-based approach to general online selection
instances and obtain an improvement over the 0.109-OCS of Fahrbach et al. [18].

Theorem 10. There is a polynomial-time 0.167-OCS for the 2-way online selection problem.

We next explain the ingredients and how to combine them to prove Theorem 10. The sequel
subsections will substantiate them, with the proofs of some lemmas deferred to Appendix C.

A main challenge in generalizing the automata-based approach to general instances is deciding
from which in-neighbor each node shall inherit the state of the automata. In other words, we need
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qO

qT

qT2

qH

qH2

T,
1

2
H
, 1
2

T, 1−
β2H,

1−
β
2

H, 1T, 1

T, 1+β
2

H, 1+β
2

Figure 2: The probabilistic automaton σ∗ that selects an element in each round in the special case
whose ex-ante dependence graph is a directed path, and in our β-tree OCS. The transitions are
labeled by the selections from

{
H,T

}
, and by the probabilities of transitions.

to select an in-arc for each node to form a directed binary forest.4 We find that the näıve approach
of independently and randomly selecting an in-arc for each node does not work unless the instance
satisfies additional properties (see Subsection 5.3.1), because we need the directed binary forest to
satisfy another property defined below.

Definition 5 (Good Forest). A good forest Gforest = (V,Eforest) with respect to an online selection
instance is a subgraph of the ex-ante dependence graph Gex-ante = (V,Eex-ante) such that:

1. Gforest = (V,Eforest) is a directed binary forest;

2. For any node p with two children c and c′ in Gforest, the corresponding rounds have no common
element, i.e., Ep ∩ Ec ∩ Ec′ = ∅.

In the following definitions, for any subset of nodes U ⊆ V , let Eforest
U denote the subset of

arcs induced by U in the forest Gforest. Further for any element e and any subset of nodes U ⊆ V
involving element e, let Eex-ante

U,e denote the subset of arcs induced by U and with subscript e:

Eex-ante
U,e

def
=
{

(t, t′)e ∈ Eex-ante : t ∈ U ; t′ ∈ U
}
.

Definition 6 (Forest Constructor). A forest constructor takes an online selection instance as input
and returns good forest Gforest = (V,Eforest). On receiving the elements E t of round t, it immediately
decides whether each in-arc of t belongs to Eforest. It is an α-forest constructor if for any element
e, any subset of nodes U ⊆ V involving e, and any β ∈ [0, 1]:

E
(
1− β

)|Eforest
U | ≤

(
1− αβ

)|Eex-ante
U,e |

. (2)

The expectation is over the randomness of the forest constructor.

The next lemma is our main result regarding forest constructors. Subsection 5.3 presents the
algorithm that proves this lemma.

4That is, each node has at most one in-arc from its parent, and at most two out-arcs to its children. The latter is
true for the ex-ante dependence graph itself, and therefore also for all its subgraphs.
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Algorithm 4 1
2 -Forest constructor for good online selection instances

For each round t: (suppose that E t = {e1, e2})
1. For i ∈ {1, 2}, let ti be the most recent round that involves ei (if exists).

2. Draw j ∈ {1, 2} uniformly at random, and include arc (tj , t)ej into Eforest (if tj is defined).

Lemma 11. There is a polynomial-time 0.404-forest constructor.

Definition 7 (Forest OCS). A forest OCS takes both an online selection instance and a good forest
Gforest = (V,Eforest) as input. At each round t, it observes the elements E t in the round and whether
each in-arc of t is in Eforest, and then selects an element from E t. It is a β-forest OCS if for any
element e and any subset of nodes U ⊆ V involving e, the probability that e is never selected in the
corresponding rounds is at most:

2−|U |
(
1− β

)|Eforest
U |

.

Our main result regarding forest OCS is the next lemma, whose proof is in Subsection 5.4.

Lemma 12. There is a polynomial-time (
√

2− 1)-forest OCS.

The next lemma combines the two ingredients to get an OCS, and implies Theorem 10 as a
corollary using Lemmas 11 and 12.

Lemma 13. Suppose that there is a polynomial-time α-forest constructor and a polynomial-time
β-forest OCS. Together they form a polynomial-time αβ-OCS.

Proof. The OCS combines the α-forest constructor and the β-forest OCS as follows. On receiving
the elements E t of a round t, it calls the forest constructor to determine whether each in-arc of t is
in Eforest. Then, it puts this information together with the elements E t and calls the forest OCS to
select an element from E t.

For any element e, and any disjoint consecutive subsequences of the rounds involving e, let
k1, k2, . . . , km be the lengths of these subsequences, and let U be the subset of nodes that correspond
to these rounds. By the guarantee of the α-forest constructor and the β-forest OCS, the probability
that element e is never selected in these rounds is at most:

E
[
2−|U |

(
1− β

)|Eforest
U |

]
≤ 2−|U |

(
1− αβ

)|Eex-ante
U,e |

.

The lemma then follows by |U | =
∑m

`=1 k` and |Eex-ante
U,e | =

∑m
`=1

(
k` − 1

)
.

5.3 Forest Constructor

5.3.1 Warm-up: Good Online Selection Instances

We say that an online selection instance is good if its ex-ante graph satisfies the second requirement
of good forests. That is, for any node p with two out-neighbors c and c′ inGex-ante, the corresponding
rounds have no common element, i.e., Ep ∩Ec ∩Ec′ = ∅. Such good instances admit a simple forest
constructor that for each node keeps one of its in-arcs independently and uniformly at random
(Algorithm 4). The simple forest constructor and its analysis are instructive, and motivate the
forest constructor for general instances, so we include them as a warm-up.

Lemma 14. Algorithm 4 is a 1
2 -forest constructor for good online selection instances.
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(a) Partition of arcs into pseudo-paths, and bolded selected arcs as a pseudo-matching
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E1 = {a, c}
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E2 = {b, d}
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E5 = {b, c}
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E6 = {b, c}

(b) Selected arcs (bolded) form a good forest in ex-ante dependence graph

Figure 3: An illustrative example of the forest constructor for general instances

Proof. For any arc a ∈ Eex-ante
U,e , let Xa ∈ {0, 1} be the indicator of whether arc a is included into

Eforest. Since every arc a ∈ Eex-ante
U,e with Xa = 1 belongs to Eforest

U , we have:(
1− β

)|Eforest
U | ≤

(
1− β

)∑
a∈Eex-ante

U,e
Xa

.

Further, since Eex-ante
U,e by definition is a subset of arcs connecting neighboring appearances of

element e, they have distinct in- and out-nodes. Hence, by the definition of Algorithm 4, Xa’s are
independently and uniformly distributed over {0, 1} for all arcs a ∈ Eex-ante

U,e . We get that

E
(
1− β

)|Eforest
U | ≤

∏
a∈Eex-ante

U,e

E
(
1− β

)Xa =
∏

a∈Eex-ante
U,e

(
1− β

2

)
=
(

1− β

2

)|Eex-ante
U,e |

.

For good instances, the second property of good forests always holds regardless of which arcs
the forest constructor selects. To satisfy the first property, i.e., to form a directed binary forest,
consider a partition of arcs according to their destinations, into groups with one or two arcs each.
Then, selecting a directed binary forest is equivalent to selecting at most one arc from each group.
The above forest constructor indeed independently and randomly selects an arc from each group.
Finally, the independent selections of arcs in Eex-ante

U,e help show that it is a 1
2 -forest constructor.

5.3.2 General Online Selection Instances, Pseudo-paths, and Pseudo-matchings

For general instances, a forest constructor needs to also ensure the second property of good forests.
In other words, for any pairs of arcs a and a′ with the same origin such that the rounds corresponding
to their incident nodes share a common element, a forest constructor must not select both a and a′

into the forest. For example, consider an instance with the ex-ante dependence graph in Figure 1.
The directed forest property requires that, e.g., arcs (1, 3)a and (2, 3)b cannot be both selected, arcs
(1, 4)c and (3, 4)a cannot be both selected, etc., due to having the same destinations. The second
property of good forests further requires that, e.g., arcs (1, 3)a and (1, 4)c cannot be both selected.
Dropping their directions, the above arcs (3, 4)a, (1, 4)c, (1, 3)a, (2, 3)b form an undirected path
3− 4− 1− 3− 2. More importantly, we can succinctly describe the aforementioned requirements of
good forests as not selecting neighboring arcs with respect to the path. Driven by this observation,
we define pseudo-paths and the pseudo-matchings below.
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Definition 8 (Pseudo-path). Given any online selection instance and its ex-ante dependence graph,
a pseudo-path is a maximal ordered subset of arcs P =

(
(ti, t

′
i)ei
)

1≤i≤` such that for any 1 ≤ i < `:

• Either t′i = t′i+1, i.e., the i-th and (i+ 1)-th arcs in P have the same destination;

• Or ti = ti+1, i.e., the i-th and (i+1)-th arcs in P have the same origin, and rounds ti = ti+1,
t′i, and t′i+1 have a common element.

Lemma 15. The pseudo-paths partition the arcs of the ex-ante graph.5

Figure 3a shows the partition of arcs into pseudo-paths in the aforementioned example whose
ex-ante dependence graph is Figure 1. We defer other structural properties about pseudo-paths to
sequel subsections where we use them to design and analyze the forest constructor.

Definition 9 (Pseudo-matching). For any pseudo-path P =
(
(ti, t

′
i)ei
)

1≤i≤`, a subset of its arcs
M is a pseudo-matching if it has no adjacent arcs with respect to P , i.e., for any 1 ≤ i < `, either
(ti, t

′
i)ei /∈M or (ti+1, t

′
i+1)ei+1 /∈M .

We remark that a pseudo-matching may not be a matching of the ex-ante dependence graph. For
example, arcs (3, 4)a and (2, 3)b form a pseudo-matching of the left-most pseudo-path in Figure 3a
even though they share node 3.

Lemma 16. A subgraph of the ex-ante dependence graph is a good forest if and only if it is a union
of pseudo-matchings, one for each pseudo-path.

Therefore, a forest constructor needs to pick a pseudo-matching from each pseudo-path. Further,
it must do so in an online fashion. On observing the elements E t of round t, it either appends t’s
in-arcs to an existing pseudo-path and lets them start a new pseudo-path on their own, according to
the definition of pseudo-paths. It also immediately decides if to include each in-arc into the pseudo-
matching. To make it an α-forest constructor for the largest possible α, we want to select as many
arcs into the pseudo-matchings as possible, and at the same time to keep the selections sufficiently
independent so that an analysis similar to Lemma 14 applies. The latter refutes selecting either all
odd arcs or all even arcs from each pseudo-path with equal probability.

5.3.3 Forest Constructor for General Instances

To explain our forest constructor for general instances, we need a structural lemma about the arrival
order of arcs in any pseudo-path. We notice that arcs usually arrive in pairs since the in-arcs of t
both arrive in round t. We will artificially break ties to be consistent with the lemma.

Lemma 17. For any pseudo-path P =
(
(ti, t

′
i)ei
)

1≤i≤` and any 0 ≤ t ≤ T , the subset of arcs
that arrive in the first t rounds is a sub-pseudo-path, i.e., either it is an empty set, or there exists
1 ≤ imin ≤ imax ≤ ` such that the arrived arcs are

(
(ti, t

′
i)ei
)
imin≤i≤imax

.

That is, after the first arc of a pseudo-path arrives, the arrival of any arc of the pseudo-path
appends to the existing sub-pseudo-path; we never need to merge two pseudo-paths. Our argument
lets i0 denote the index of the earliest arc. We say that the arcs with indices i ≥ i0 are on the
positive end, and those with indices i < i0 are on the negative end.6 Finally, changing the roles of

5We consider two pseudo-paths with the same subset of arcs but in opposite orders as the same pseudo-path.
6The algorithm does not need to know the index i0 upfront. Instead, it could let the earliest arc have index 0; arcs

on the positive ends have indices 0, 1, 2, etc., and those on the negative end have indices −1,−2,−3, etc. Nonetheless,
the choice of indices in the main text admits cleaner notations in the analysis.
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(a) Automaton σ+ for the positive end
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(b) Automaton σ− for the negative end

Figure 4: The probabilistic automata in our forest constructor (Algorithm 5). The transitions are
labeled by the binary decisions and the probabilities of the transitions.

the positive and negative ends will not affect our conclusion, so we will without loss of generality
let the second earliest arc of any pseudo-path be on the positive end.

The forest constructor uses a probabilistic automaton σ+ and its inverse σ−. The automata
have states qU, qU2 , and qM. Intuitively, state qU means that automaton σ+ leaves the last arc
unmatched, but matches the arc before that; state qU2 means that automaton σ+ leaves the last
two arcs unmatched; and state qM means that automaton σ+ matches the last arc. The transition
functions, which we denote also as σ+ and σ− abusing notations, take a state as input and returns
the next state and also a binary decision. They are parameterized by p ∈ [0, 1], the transition
probability from qU to qM in automaton σ+. We will let p = 0.6616 in the analysis to optimize the
result. Formally, the transition functions are (see also Figure 4):

σ+
(
qU
)

=

{
(qU,M) w.p. p

(qU2 ,U) w.p. 1− p
, σ+

(
qU2

)
= (qM,M) , σ+

(
qM
)

= (qU,U) ;

σ−
(
qU
)

= (qM,U) , σ−
(
qU2

)
= (qU,U) , σ−

(
qM
)

=

{
(qU,M) w.p. p

(qU2 ,M) w.p. 1− p
.

For each pseudo-path, our forest constructor draws an initial state from the common stationary
distribution of the automata. Then, when an arc arrives on the positive end, it calls σ+ to update
the state and to decides whether to include the arc into the pseudo-matching; similarly, when an
arc arrives on the negative end, it calls σ−. See Algorithm 5.

5.3.4 Properties of the Automata

Lemma 18. The stationary distribution of the states of σ+ and σ− is:

π =
(
πU, πU2 , πM

)
=
( 1

3− p
,
1− p
3− p

,
1

3− p

)
.

The next lemma formalizes the claim that σ− is the inverse of σ+.

Lemma 19. Consider two sequences of random variables:

1. Sample q0 from the stationary distribution π. Then recursively let:(
qi, di

)
= σ+

(
qi−1

)
, 1 ≤ i ≤ ` .

18



Algorithm 5 0.404-Forest constructor for general instances (when p = 0.6616)

State variables: (for each pseudo-path P )

• q+, q− ∈ {qU, qU2 , qM} of automata σ+, σ− respectively.

• Initialize (when the first arc in the pseudo-path arrives):

q+ = q− =


qU w.p. 1

3−p ;

qU2 w.p. 1−p
3−p ;

qM w.p. 1
3−p .

For each arc: (of pseudo-path P )

1. Let τ = + if the arc is on the positive end, and − otherwise.

2. Let (qτ , d) = στ (stateτ ).

3. Include the arc into the pseudo-matching and thus the forest if d = M.

2. Sample q̂i0−1 from the stationary distribution π. Then recursively let:(
q̂i, d̂i

)
= σ+

(
q̂i−1

)
, i0 ≤ i ≤ ` ;(

q̂i−1, d̂i
)

= σ−
(
q̂i
)
, 1 ≤ i < i0 .

The two sequences are identically distributed.

The second sequence corresponds to the states and decisions of automata σ+, σ− in Algorithm 5:
q̂i0−1 is the common initial state of σ+ and σ−; q̂i and di for i ≥ i0 are the states and decisions on
the positive end; q̂i and di for i < i0 are the states and decisions on the negative end. Lemma 19
allows us to analyze each pseudo-path as if the arcs’ arrival order is from one end to the other.

Next we adopt the viewpoint of selecting arcs with only automaton σ+, and develop several
properties of the corresponding sequence

(
q0, d1, q1, . . . , d`, q`

)
. We start with three lemmas that

follow by the definition of σ+.

Lemma 20. For any 1 ≤ i ≤ `, qi = qM if and only if di = M.

Lemma 21. For any 1 ≤ i ≤ `:
Pr
[
di = M

]
=

1

3− p
.

Lemma 22. For any 1 ≤ i ≤ `− 2, at least one of di, di+1, and di+2 equals M.

Lemma 20 asserts that every time σ+ selects an arc into the pseudo-matching (and thus the
forest), it resets to state qM. Combining with Lemma 18, we get the marginal selection probability
in Lemma 21. Lemma 22 further claims that it resets to state qM at least once every three rounds.
Hence, we focus on how the probabilistic automaton transitions starting from state qM, and in
particular how likely the i-th arc after that would be selected, which in turns characterizes the
transition from the other two states. These probabilities are characterized by a recurrence:

fi =


1 i = 0 ;

0 i = 1 ;

p i = 2 ;

pfi−2 + (1− p)fi−3 i ≥ 3 .

(3)

19



Lemma 23. For any i ≤ j:

Pr
[
dj = M | qi = qM

]
= Pr

[
dj = M | di = M

]
= fj−i .

Further, for any i ≤ j − 1:

Pr
[
dj = M | qi = qU2

]
= fj−i−1 ,

Pr
[
dj = M | qi = qU

]
= fj−i+1 .

Lemma 24. Suppose that
√

5−1
2 ≤ p ≤ 2

3 . Then:

fi ≥ 1− p , ∀i ≥ 2 ;

fi ≥ p3 +
(
1− p

)2 ∀i ≥ 4 .

5.3.5 Analysis of Forest Constructor for General Instances: Proof of Lemma 11

This subsection proves Lemma 11 by showing that Algorithm 5 with p = 0.6616 is a 0.404-forest
constructor. Below summarizes some properties that either follow by the definition of Algorithm 5,
or have been established in the previous subsections:

• Constructing a good forest is the same as selecting a pseudo-matching from each pseudo-path.
(Lemma 16)

• The selections of arcs in different pseudo-paths are independent. (Definition of Algorithm 5)

• The selections of arcs on a pseudo-path is equivalent to sampling a state from the stationary
distribution π, and applying σ+ to decide for each arc from one end to the other. (Lemma 19)

• Automaton σ+ selects an arc and resets to state qM at least once every three rounds.
(Lemmas 20 and 22)

• The probability of selecting the i-th arc after any state is characterized by fi, which can be
lower bounded. (Lemmas 23 and 24)

Proving that Algorithm 5 Constructs a Good Forest. Consider an arbitrary pseudo-path.
By the definition of σ+, it resets its state to qM when the decision is M (Lemma 16), i.e., when
an arc is selected, after which the next decision will be U. Therefore, the arcs selected from each
pseudo-path are a pseudo-matching. By Lemma 16 this is a good forest.

Proof of Equation (2). To show the guarantee of a α-forest constructor, which we restate below:

∀0 ≤ β ≤ 1 : E
(
1− β

)|Eforest
U | ≤

(
1− αβ

)|Eex-ante
U,e |

, (Eqn. (2) restated)

it suffices to consider each pseudo-path P separately and to show that:

∀0 ≤ β ≤ 1 : E
(
1− β

)|Eforest
U ∩P | ≤

(
1− αβ

)|Eex-ante
U,e ∩P |

, (4)

after which Eqn. (2) follows by taking the product of Eqn. (4) over all pseudo-paths, and by the
independence of arc selections in different pseudo-paths.

The rest of the argument considers an arbitrary pseudo-path P and proves Eqn. (4). We start
by establishing the last structural lemma about pseudo-paths, characterizing the subset of arcs that
could contribute to the inequality by being counted in Eforest

U .
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Lemma 25. For any element e, and any subset of nodes U ⊆ V involving e, there is a subset of
arcs in P with both nodes inside U such that:

1. It is a superset of Eex-ante
U,e ∩ P ;

2. It is the union of odd-length sub-pseudo-paths;

3. Any two of these sub-pseudo-paths are at least 3 arcs apart; and

4. Each sub-pseudo-path alternates between arcs with subscript e, i.e., arcs that also contribute to
the right-hand-side of Eqn. (4), and arcs with other subscripts, i.e., arcs that only contribute
to the left-hand-side. The arcs on the two ends have subscript e.

Given Lemma 25, we may assume that the subset of arcs in P with both nodes involving e are
sub-pseudo-paths starting from arc indices i1, i2, . . . , im and lengths 2k1 + 1, 2k2 + 1, . . . , 2km + 1.
Let Ij denote the set of indices of the j-th sub-pseudo-path:

Ij =
{
ij , ij + 1, . . . , ij + 2kj

}
.

Let I = ∪mj=1Ij denote the set of arc indices in these pseudo-paths. For each arc i ∈ I, consider
the indicator of if the i-th arc on the pseudo-path is selected into the pseudo-matching:

Xi
def
= 1

(
di = M

)
.

Since any arc in I have both nodes in U by definition, we have:

|Eforest
U ∩ P | ≥

∑
i∈I

Xi .

Further, there are kj + 1 arcs with subscripts e in the j-th sub-pseudo-path (i.e., contributing
to Eex-ante

U,e ∩ P ) by Lemma 25. Hence, to prove Eqn. (4) it is sufficient to show:

E
(
1− β

)∑
i∈I Xi ≤

(
1− αβ

)∑m
j=1(kj+1)

.

We next argue that it suffices to consider the case when all sub-pseudo-paths have unit lengths,
because we can reduce the general case to it. Suppose that the j-th pseudo-path has length
2kj + 1 > 1. When 2kj + 1 = 3 or 2kj + 1 ≥ 7, by Lemma 22 we have:∑

i∈Ij

Xi ≥
⌊2kj + 1

3

⌋
≥ kj + 1

2
.

Hence, regardless of the realization of randomness in the forest constructor (Algorithm 5), for
α = 0.404 and for any β ∈ [0, 1] we always have:

(
1− β

)∑
i∈Ij

Xi ≤
(
1− β

) kj+1

2 ≤
(

1− β

2

)kj+1
≤
(
1− αβ

)kj+1
.

In other words, we can without loss of generality remove the j-th sub-pseudo-path and prove
Eqn. (4) for the remaining instance.

When 2kj + 1 = 5, i.e., kj = 2, also by Lemma 22 we have:∑
i∈Ij ,i 6=ij

Xi ≥ 1 .
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Hence, regardless of the realization of randomness in the forest constructor (Algorithm 5), for
α = 0.404 and for any β ∈ [0, 1] we always have:(

1− β
)∑

i∈Ij ,i6=ij
Xi ≤

(
1− β

)
≤
(

1− β

2

)2
≤
(
1− αβ

)2
.

That is, we can without loss of generality remove the arcs other than ij from j-th sub-pseudo-
path and prove Eqn. (4) for the remaining instance.

Finally, consider Eqn. (4) when all sub-pseudo-paths have unit lengths. In other words, for a
subset of indices I = {i1, i2, . . . , im} such that any two indices differ by at least 4 (Lemma 25), we
shall prove that:

∀0 ≤ β ≤ 1 : E
(
1− β

)∑
i∈I Xi ≤

(
1− αβ

)m
.

Our proof is an induction on m. The base case when m = 1 follows by:

E
(
1− β

)Xi1 ≤ 1

3− p
(
1− β

)
+

2− p
3− p

(Lemma 21)

= 1− 1

3− p
β

≤ 1− αβ . (α = 0.404, p = 0.6616)

Suppose that the inequality holds for up to m − 1 indices. We next prove it for m indices.
Suppose without loss of generality that i1 < i2 < · · · < im. By the inductive hypothesis:

E
(
1− β

)∑
i∈I,i 6=im

Xi ≤
(
1− αβ

)m−1
.

It suffices to prove that for any realized Xi1 , Xi2 , . . . , Xim−1 :

E
[
Xim | Xi1 , . . . , Xim−1

]
≥ α ,

as it would imply that:

E
[(

1− β
)Xim | Xi1 , . . . , Xim−1 = 1

]
≤
(
1− β

)
α+

(
1− α

)
= 1− αβ .

For any realization such that Xim−1 = 1:

E
[
Xim | Xi1 , . . . , Xim−1 = 1

]
= fim−im−1 (Lemmas 20, 23)

≥ p3 + (1− p)2 (im − im−1 ≥ 4 and Lemma 24)

≥ α . (α = 0.404, p = 0.6616)

For a realization such that Xim−1 = 0, the state after processing arc im−1 could be qU or qU2 .
We first argue that it is the former at least a 1

1+p fraction of the time.

Lemma 26. For any realization such that Xim−1 = 0:

Pr
[
qim−1 = qU | Xi1 , . . . , Xim−1 = 0

]
≥ 1

1 + p
.

Given Lemma 26, we can lower bound E
[
Xim | Xi1 , . . . , Xim−1 = 0

]
by:

1

1 + p
E
[
Xim | qim−1 = qU

]
+

p

1 + p
min

{
E
[
Xim | qim−1 = qU

]
,E
[
Xim | qim−1 = qU2

]}
.
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Algorithm 6 (
√

2− 1)-Forest OCS

Input:

• An online selection instance represented by its ex-ante graph Gex-ante = (V,Eex-ante).

• A good forest Gforest = (V,Eforest).

State variables:

• Label `t(e) ∈
{
H,T

}
for every round 1 ≤ t ≤ T and every element e ∈ E t.

• State qt of automaton σ∗ for every node 1 ≤ t ≤ T .

For each round t: (suppose that E t = {e1, e2})
1. If t is the root of a directed binary tree in Gforest, let the labels be `t(e1) = H, `t(e2) = T.

2. Otherwise, suppose without loss of generality that (t′, t)e1 is the in-arc of node t in Gforest,
let `t(e1) = `t′(e1) and let `t(e2) be the other label from

{
H,T

}
.

3. Let (qt, `) = σ∗(qt
′
) (artificially let qt

′
= qO if t is the root of a directed binary tree).

4. Select the element with label `.

Suppose that im − im−1 = 4. By Lemma 24:

E
[
Xim | qim−1 = qU

]
= f5 = 2p(1− p) ;

E
[
Xim | qim−1 = qU2

]
= f3 = 1− p .

Observe that 2p(1− p) > 1− p for p = 0.6616. We get that:

E
[
Xim | Xi1 , . . . , Xim−1 = 0

]
≥ 1

1 + p
· 2p(1− p) +

p

1 + p
· (1− p)

=
3p(1− p)

1 + p
≥ α . (α = 0.404, p = 0.6616)

Otherwise, we have that im − im−1 ≥ 5. By Lemma 24:

E
[
Xim | qim−1 = qU

]
= fim−im−1+1 ≥ p3 +

(
1− p

)2
;

E
[
Xim | qim−1 = qU2

]
= fim−im−1−1 ≥ p3 +

(
1− p

)2
.

Hence:

E
[
Xim | Xi1 , . . . , Xim−1 = 0

]
≥ p3 +

(
1− p

)2 ≥ α . (α = 0.404, p = 0.6616)

5.4 Forest OCS

5.4.1 Algorithm

On observing the elements E t of each round t, the forest OCS labels the elements by head (H) and
tail (T). Then, it calls automaton σ∗ from Subsection 5.2.1 with the state of t’s parent in the good
forest as input to select a label and to get the state of t. Finally, it selects the element whose label
is selected by automaton σ∗. See Algorithm 6.
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5.4.2 Analysis: Proof of Lemma 12

The lemmas in this subsection assume β =
√

2− 1, which we shall not restate repeatedly. We first
establish a structural lemma about the subset of arcs with both nodes involving an element e in
any good forest, and about the labels in Algorithm 6. Recall that Eforest

U denotes the subset of arcs
in forest Gforest with both nodes in U .

Lemma 27. For any good forest Gforest = (V,Eforest), any element e, and any subset of nodes
U ⊆ V involving e, Eforest

U consists of a collection of tree-paths such that:

1. There is no arc between any two nodes in distinct tree-paths; and

2. Element e has the same label in each tree-path.

We next prove Lemma 12 by an induction on the number of tree-paths in Eforest
U . The base case

with zero tree-path holds vacuously.
Next for some m ≥ 1 suppose that the lemma holds with at most m−1 tree-paths. Consider an

arbitrary instance for which Eforest
U consists of m tree-paths satisfying the properties of Lemma 27.

Let t1, t2, . . . , tm denote the first node of these tree-paths. Let k1, k2, . . . , km be the lengths. We
assume without loss of generality that tm’s height in its directed binary tree is greater than or equal
to the height of any other ti from the same tree.

Case 1: Suppose that tm is the root of a directed binary tree in Gforest. First by the inductive
hypothesis on the sub-instance that removes the tree rooted at tm, the probability of not selecting
element e in these tree-paths is at most 2−

∑m−1
i=1 ki(1 − β)

∑m−1
i=1 (ki−1). Then, conditioned on any

realized randomness on the other tree-paths, the probability of never selecting e on the tree-path
starting with tm is at most 2−km(1−β)km−1, because of the second part of Lemma 27 and a special
case of the next lemma when i = 1.

Lemma 28. For any k consecutive positive integers i, i+ 1, . . . , i+k− 1, and any label ` ∈ {H,T},
the probability that automaton σ∗, starting from the original state qO, does not select label ` in its
i-th to (i+ k − 1)-th selections is at most 2−k(1− β)k−1.

Case 2: Suppose that tm is not the root of any directed binary tree in Gforest, but its sibling in
Gforest (if any) is not one of t1, t2, . . . , tm−1. By the latter assumption, the fact that tm’s parent
is not on the other tree-paths (Lemma 27, first part), and the assumption that tm has the largest
height compared to other ti from the same directed binary tree, we get that the nodes rooted from
tm’s parent are not on the other tree-paths. Then, by the inductive hypothesis on the sub-instance
that removes nodes rooted from tm’s parent, the probability of not selecting element e in these
tree-paths is at most 2−

∑m−1
i=1 ki(1 − β)

∑m−1
i=1 (ki−1). Then, conditioned on any realized randomness

on the other tree-paths, the probability of never selecting e on the tree-path starting with tm is at
most 2−km(1− β)km−1, because of the second part of Lemma 27 and the next lemma.

Lemma 29. For any k consecutive positive integers i, i+ 1, . . . , i+ k − 1 starting from i ≥ 2, and
any label ` ∈ {H,T}, the probability that automaton σ∗, starting from an arbitrary state, does not
select label ` in its i-th to (i+ k − 1)-th selections is at most 2−k(1− β)k−1.

Case 3: Suppose that tm is not the root of any directed binary tree in Gforest, and further its
sibling in Gforest is tj , the starting node of another tree-path in Lemma 27. Since tm’s parent is
not on the other tree-paths (Lemma 27, first part), and further by the assumption that tm has the
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largest height compared to other ti from the same directed binary tree, the nodes rooted from tm
and tj ’s parent are not on the other tree-paths. By the inductive hypothesis on the sub-instance
that removes the nodes rooted from tm’s parent, the probability of not selecting element e in these
tree-paths is at most 2−

∑
i 6=j,m ki(1−β)

∑
i 6=j,m(ki−1). Then, conditioned on any realized randomness

on the other tree-paths, the probability of never selecting e on the tree-paths starting with tj and tm
is at most 2−kj−km(1 − β)(kj−1)+(km−1), because of the second part of Lemma 27, the observation
that e must get different labels on these two tree-paths,7 and the next lemma.

Lemma 30. Consider two independent copies of automaton σ∗ from an arbitrary but identical
initial state. Then, for any k, k̂ ≥ 1, the probability that the first copy never selects T in the first k

rounds, and the second copy never selects H in the first k̂ rounds is at most 2−k−k̂(1−β)(k−1)+(k̂−1).

5.5 Hardness

Fahrbach et al. [18] rule out the possibility of 1-OCS. This subsection improves the upper bound to
1
4 . This holds even for algorithms with unlimited computational power, and even if the algorithms
know the instance beforehand.

Theorem 31. There is no (1
4 + ε)-OCS for any constant ε > 0.

Proof. Consider any γ-OCS. Consider an online selection instance with three elements {0, 1, 2} and
T = 2i+ 1 rounds. The elements in odd rounds are {0, 1}; the elements in even rounds are {0, 2}.
We shall prove that γ ≤ i

4i−1 even if we omit the properties of γ-OCS concerning three or more
rounds. Theorem 31 then follows by choosing a sufficiently large i.

For any even 1 ≤ t ≤ T (so that the elements are {0, 2}), let At be the event that the algorithm
selects element 0 in rounds t. We have:

∀1 ≤ t ≤ T, t ≡ 0 mod 2 : Pr
[
At
]

=
1

2
.

For any 1 ≤ t < t′ ≤ T with distinct parities (so that 0 is the only common element), let Bt,t′

be the event that the algorithms does not select element 0 in both rounds t and t′. We have:

∀1 ≤ t < t′ ≤ T, t+ t′ ≡ 1 mod 2 : Pr
[
Bt,t′

]
≤


1
4 t′ ≥ t+ 3 ;

1−γ
4 t′ = t+ 1 .

For any 1 ≤ t < t′ ≤ T with the same parity (so that they have the same two elements), let
Ct,t

′
be the event that the algorithms selects element 0 in both rounds t and t′ (i.e., it does not

select the other element in both rounds). We have:

∀1 ≤ t < t′ ≤ T, t+ t′ ≡ 0 mod 2 : Pr
[
Ct,t

′] ≤


1
4 t′ ≥ t+ 4 ;

1−γ
4 t′ = t+ 2 .

7The parent p of tj , tm must not contain e by the second requirement of good forest. Suppose that p’s common
elements with tj , tm are ej , em 6= e respectively. Then, e’s labels in tj , tm are the labels of em, ej in p respectively.
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Summing together:∑
t≡0 mod 2

Pr
[
At
]

+
∑

t<t′:t+t′≡1 mod 2

Pr
[
Bt,t′

]
+

∑
t<t′:t+t′≡1 mod 2

Pr
[
Ct,t

′]
≤ 1

2
· i︸︷︷︸

events At

+
1

4
· i(i− 1) +

1− γ
4
· 2i︸ ︷︷ ︸

events Bt,t′

+
1

4
· (i− 1)2 +

1− γ
4
· (2i− 1)︸ ︷︷ ︸

events Ct,t′

=
2i2 + 3i

4
− 4i− 1

4
γ . (5)

Next consider any selections (s1, s2, . . . , sT ) by the algorithm. Let jo and je be the numbers of
odd and even rounds that select st = 0 respectively. The number of events that it satisfies equals:

je︸︷︷︸
events At

+ (i+ 1− jo)(i− je)︸ ︷︷ ︸
events Bt,t′

+

(
jo
2

)
+

(
je
2

)
︸ ︷︷ ︸

events Ct,t′

=
1

2

(
jo + je − i−

1

2

)2
+
i(i+ 1)

2
− 1

8

≥ i(i+ 1)

2
. (i, jo, je are integers)

As a result we get that:∑
t≡0 mod 2

Pr
[
At
]

+
∑

t<t′:t+t′≡1 mod 2

Pr
[
Bt,t′

]
+

∑
t<t′:t+t′≡1 mod 2

Pr
[
Ct,t

′] ≥ i(i+ 1)

2
. (6)

Combining Equations (5) and (6) gives γ ≤ i
4i−1 as desired.

6 Applications in Online Bipartite Matching

6.1 Online Bipartite Matching Preliminaries

Consider an undirected bipartite graph G = (L,R,E), where L and R are the sets of left-hand-side
and right-hand-side vertices respectively, and E is the set of edges. Each edge (u, v) ∈ E has a
positive edge-weight wuv > 0. The problem is unweighted if wuv = 1 for all (u, v) ∈ E, is vertex-
weighted if wuv = wu for some positive vertex-weights (wu)u∈L of the left-hand-side vertices, and
is edge-weighted if the edge-weights could be arbitrary.

In online bipartite matching problems, we refer to the left-hand-side and right-hand-side vertices
as offline and online vertices respectively. Initially, the algorithm only knows the offline vertices,
and the vertex-weights in the vertex-weighted case. Then, the online vertices arrive one at a time.
When an online vertex v ∈ R arrives, the algorithm sees its incident edges, and the edge-weights in
the edge-weighted case. The algorithm then immediately and irrevocably matches v to an offline
neighbor u ∈ L.

The objective is to maximize the sum of the maximal edge-weight matched to each offline vertex.
In the unweighted and vertex-weighted problems, matching an offline vertex more than once does
not further increase the objective. Therefore, we may assume without loss of generality that the
algorithm matches each offline vertex at most once and the matched edges indeed form matching.
The objectives in these two cases are equivalent to maximizing the cardinality of the matching, and
maximizing the sum of the vertex-weights of matched offline vertices, respectively.

In edge-weighted online bipartite matching, we may alternatively view the above objective as
allowing disposals of previously matched edges so that a matched offline vertex could be rematched
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to a new edge with a larger edge-weight. In other words, we may think of the matching as being
comprised of the heaviest edge matched to each offline vertex, and seek to maximize the total edge-
weight of the matching. Further in online advertising, it corresponds to displaying an advertiser’s
ad multiple times but only charges for the most valuable one. Feldman et al. [19] introduce this
free disposal model which has then become the standard model of edge-weighted online bipartite
matching under worst-case competitive analysis.

We compare the expected objective of the matching by the algorithm, and the optimal matching
that maximizes the objective in hindsight given full information of the bipartite graph G = (L,R,E)
and the edge-weights (wuv)(u,v)∈E . The competitive ratio of an online algorithm is the infimum of
this ratio over all possible instances.

6.2 Semi-OCS and Unweighted and Vertex-weighted Online Bipartite Matching

Fahrbach et al. [18] give a two-choice greedy algorithm for unweighted online bipartite matching,
using a semi-OCS as a sub-routine. Their original theorem is only for the unweighted problem and
only for the guarantee of γ-semi OCS, i.e., p(k) = 2−k(1 − γ)k−1. Nonetheless, the algorithm and
analysis generalize to the vertex-weighted case and for general p(k) by standard techniques in the
online matching literature. We state the more general theorem below.

Theorem 32 (c.f., Fahrbach et al. [18]). Given a semi-OCS such that the probability of never se-
lecting an element e that appears k times is at most p(k), there is a Γ-competitive two-choice greedy
algorithm for unweighted and vertex-weighted online bipartite matching, where the competitive ratio
Γ is the optimal value of the following linear program (LP):

maximize Γ (Matching LP)

subject to a(k) + b(k) ≤ p(k)− p(k + 1) ∀k ≥ 0 (7)

k−1∑
i=0

a(i) + 2b(k) ≥ Γ ∀k ≥ 0 (8)

b(k + 1) ≤ b(k) ∀k ≥ 0 (9)

a(k), b(k) ≥ 0 ∀k ≥ 0

We will not present the generalized algorithm and the proof of Theorem 32 because they will
be subsumed by the algorithm and theorem in the next subsection. Instead, the main result of
this subsection is an explicit optimal solution to the LP. By contrast, Fahrbach et al. [18] rely on
solving a finite approximation of the LP numerically using LP solvers.

Theorem 33. Suppose that p(0) = 1 and p(k + 1) ≤ 2
3p(k) for any k ≥ 0. Then, the Matching

LP admits an optimal solution as follows:

Γ = 1− 1

3

∞∑
i=0

(2

3

)i
p(i) ;

b(k) =
1

3

∞∑
i=k

(2

3

)i−k(
p(i)− p(i+ 1)

)
∀k ≥ 0 ;

a(k) = p(k)− p(k + 1)− b(k) ∀k ≥ 0 .
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The assumption of p(k + 1) ≤ 2
3p(k) is essentially without loss of generality since any natural

online selection algorithm shall at least halve the unselected probability after each round involving
the element. Indeed, even the trivial independent sampling satisfies the stronger p(k+ 1) ≤ 1

2p(k).
The proof of this theorem is deferred to Appendix D.1.

For γ-semi-OCS, it recovers a result by Huang et al. [24] as a corollary.

Corollary 34 (c.f., Huang et al. [24]). Suppose that p(k) = 2−k(1− γ)k−1. Then the optimal value
of the Matching LP is:

3 + 2γ

6 + 3γ
.

Since the optimal semi-OCS in Section 3 gives p(k) = 2−2k+1, we have the next corollary through
a numerical calculation.

Corollary 35. The two-choice greedy algorithm using the optimal semi-OCS as a sub-routine is at
least 0.536-competitive for unweighted and vertex-weighted online bipartite matching.

6.3 OCS and Edge-weighted Online Bipartite Matching

6.3.1 Online Primal-Dual Algorithm

This subsection gives a variant of the online primal-dual algorithm of Fahrbach et al. [18] for edge-
weighted online bipartite matching, using an OCS as a sub-routine. This variant simplifies the
analysis in the next subsection. To simplify exposition, we assume that for every online vertex v
there is a unique offline dummy vertex such that the edge between them has weight 0. Then, every
online vertex will be matched, although being matched to the dummy vertex is the same as being
left unmatched.

For each online vertex v, the algorithm shortlists two candidates u1, u2 from v’s neighbors. If
the shortlisted candidates are the same, the algorithm matches v to it. Otherwise, the algorithm
lets the OCS selects one of them and matches v to the selected one. To explain how the algorithm
makes the shortlists, let ku(w) be the number of times that u is shortlisted thus far due to online
vertices with edge-weight wuv ≥ w. In a round in which u1 = u2 = u, the corresponding ku(w)’s
increase by 2. We remark that ku(w) = 0 for any dummy offline vertex u and for any w > 0. The
algorithm is parameterized by the optimal solution to the Matching LP in Theorem 33. Given
the optimal solution, define the “value” of matching an online vertex v to an offline vertex u as:

∆uβv
def
=

∫ wuv

0
b
(
ku(w)

)
dw − 1

2

∫ ∞
wuv

ku(w)−1∑
i=0

a(i)dw . (10)

For each online vertex v, the algorithm first finds u1 with the maximum ∆uβv, and then finds u2

with the maximum updated ∆uβv. If u1 = u2, match v to it. Otherwise, match v to the one that the
OCS selects. Following the terminology of Fahrbach et al. [18], we call the former a deterministic
round, and the latter a randomized round. Their algorithm computes the “values” of deterministic
and randomized rounds using different equations. By contrast, our variant computes the “values”
using the same Eqn. (10). See Algorithm 7.

6.3.2 Improved Online Primal-Dual Analysis

This subsection improves the analysis of Fahrbach et al. [18] in twofold. First, our edge-weighted
result uses the LP in Theorem 32 and its optimal solution in Theorem 33, same as the unweighted

28



Algorithm 7 Online primal-dual edge-weighted bipartite matching algorithm

State variables: (for each offline vertex u)

• ku(w): the number of times u1 = u or u2 = u and further its edge weight is at least w.

On the arrival of an online vertex v ∈ R:

1. For ` ∈ {1, 2}:
(a) Find u` with maximum ∆uβv given by Eqn. (10).

(b) Increase ku`(w) by 1 for 0 ≤ w ≤ wu`v.
2. If u1 6= u2, let the OCS select one of them, and match v to it. (Randomized round)

3. Otherwise, match v to u1 = u2. (Deterministic round)

and vertex-weighted cases. By contrast, the analysis of Fahrbach et al. [18] for edge-weighted
online bipartite matching needs to consider a LP with additional constraints. Second, our analysis
indicates that the online selection algorithm only needs to guarantee a condition strictly weaker
than the property of γ-OCS. It enables us to further explore a variant of OCS in the next subsection
to further improve the competitive ratio in edge-weighted online bipartite matching.

Theorem 36. Suppose that (p(k))k≥0 is non-increasing and satisfies p(0) = 1, and Γ, (a(k))k≥0,
and (b(k))k≥0 form a solution to the Matching LP. Algorithm 7 is Γ-competitive for edge-weighted
online bipartite matching if the OCS ensures that for any online selection instance, any element e,
and any consecutive subsequences of the rounds involving the element with lengths k1, k2, . . . , km,
element e is unselected in these rounds with probability at most:

p
( m∑
i=1

ki

)
+

1

2

m∑
i=2

k1+···+ki−1−1∑
j=0

a(j) . (11)

We make three remarks before presenting the proof of the theorem. First, for unweighted and
vertex-weighted online bipartite matching, the online selection algorithm only needs to ensure the
above property for the subset of all k rounds involving an element. Then, it degenerates to the
guarantee of semi-OCS because m = 1 and thus the second term involving the a(j)’s disappears.
The proof below shall make this explicit.

Further, the guarantee in Eqn. (11) holds almost trivially for natural online selection algorithms
whenm ≥ 3. On the one hand, any natural algorithm would at least halve the unselected probability
for every round involving the element. Hence, after

∑m
i=1 ki ≥ 3 rounds, the unselected probability

is at most 1
8 . On the other hand, the optimal LP solution from Theorem 33 satisfies that a(0) ≥ 2

9
for all online selection algorithms in the literature and in this paper, and even for the overly idealized
algorithm that ensure selecting an element when it appears more than once. Hence, the a(0)’s in
the second term of Eqn. (11) sum to at least 2

9 >
1
8 . A similar argument shows that the guarantee

holds almost trivially for m = 2 if k1 + k2 ≥ 3. Hence, it suffices to slightly enhance the semi-OCS
guarantee to further handle either a single consecutive subsequence (but not necessarily starting
from the earliest round involving the element as in semi-OCS), or two very short consucutive
subsequences. This motivates the variant of OCS in the next subsection.

Finally, Theorem 36 subsumes the analysis of Fahrbach et al. [18] because the original guarantee
of γ-OCS satisfies Eqn. (11), as we will prove in the next lemma.

Lemma 37. Suppose that γ ∈ [0, 1
4 ],8 and p(k) = 2−k(1 − γ)k−1 for k ≥ 0. Let (a(k))k≥0 take

8Theorem 31 shows that there is no γ-OCS for γ > 1
4
.
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values as in the optimal LP solution in Theorem 33. Then, for any positive integers k1, k2, . . . , km:

m∏
i=1

2−ki(1− γ)ki−1 ≤ 2−
∑m

i=1 ki(1− γ)
∑m

i=1 ki−1 +
1

2

m∑
i=2

k1+···+ki−1−1∑
j=0

a(j) .

Proof. In fact we will prove it even dropping all a(j)’s for j ≥ 1. If m = 1 the left-hand-side equals
the first term on the right-hand-side. If m ≥ 2, the difference between the left-hand-side and the
first term on the right-hand-side is:(

1− (1− γ)m−1
) m∏
i=1

2−ki(1− γ)ki−1 ≤ (m− 1)γ
m∏
i=1

2−ki(1− γ)ki−1

≤ (m− 1)γ

4
. (

∑k
i=1 ki ≥ 2)

On the other hand, Theorem 33 indicates that for p(k) = 2−k(1− γ)k−1:

a(0) =
3 + γ

12 + 6γ
≥ γ

2
,

for any γ ≤ 1
4 .9 Hence, the a(0)’s in the second term on the right sum to at least (m−1)γ

4 .

Proof of Theorem 36. For any offline vertex u, consider the subset of rounds in which u is shortlisted
as u1 or u2 by Algorithm 7. Further for any weight level w > 0, suppose that the subset of rounds in
which u is shortlisted by an online vertex v with edge-weight wuv ≥ w form consecutive subsequences
of lengths k1, k2, . . . , km. We remark that if u1 = u2 = u in the round of some online vertex v with
wuv ≥ w, this deterministic round contributes 2 to the corresponding ki. In such cases the sequel
probability bounds hold trivially because u is matched to an edge weight weight at least w with
certainty. The binding case of our analysis is when there are only randomized rounds. The OCS
guarantee in the theorem statement ensures that the probability of matching u to one of them is
at least:

yu(w)
def
= 1− p

( m∑
i=1

ki

)
− 1

2

m∑
i=2

k1+···+ki−1−1∑
j=0

a(j) . (12)

Therefore, the expected maximum edge-weight matched to vertex u is at least
∫∞

0 yu(w)dw.
The expected total weight of the matching by Algorithm 7 is at least:

Alg
def
=
∑
u∈L

∫ ∞
0

yu(w)dw .

The competitive analysis is a charging argument. For every online vertex v ∈ R, we split the
changes of Alg among the shortlisted offline verties u1, u2 and the online vertex v. Formally, let
αu =

∫∞
0 αu(w)dw be the gain of each offline vertex u ∈ L, where αu(w) is the contribution from

weight-level w. Let βv denote the gain of each online vertex v. Both are initially zero. Then, as an
online vertex v arrives and when u ∈ {u1, u2} is shortlisted, suppose that yu(w) changes by ∆yu(w)
for any 0 ≤ w ≤ wuv:

• Increase βv by ∆uβv according to Eqn. (10), which we restate below:

∆uβv
def
=

∫ wuv

0
b
(
ku(w)

)
dw − 1

2

∫ ∞
wuv

ku(w)−1∑
i=0

a(i)dw .

9In fact, this holds for any 0 ≤ γ ≤
√
61−5
6
≈ 0.468
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• Increase αu(w) by:

∆αu(w)
def
=

∆yu(w)− b
(
ku(w)

)
if wuv ≥ w

1
2

∑ku(w)−1
i=0 a(i) if 0 ≤ wuv < w

. (13)

We remark that the values of ku(w)’s in the above charging rules are at the moment when u is
shortlisted by the algorithm for online vertex v.

Feasibility of the Charging Rule. We first verify that the total change in αu and βv equals
the change of Alg due to online vertex v. By Equations (10) and (13), the total change in the
vertices’ gains equals:∫ wuv

0

(
∆yu(w)− b(ku(w))

)
dw +

1

2

∫ ∞
wuv

ku(w)−1∑
i=0

a(i)dw︸ ︷︷ ︸
change of αu

+

∫ wuv

0
b
(
ku(w)

)
dw − 1

2

∫ ∞
wuv

ku(w)−1∑
i=0

a(i)dw︸ ︷︷ ︸
change of βv

=

∫ wuv

0
∆yu(w)dw .

Invariant of Offline Gain. Next we show that for any offline vertex u, and any positive weight-
level w > 0:

αu(w) ≥
ku(w)−1∑
i=0

a(i) . (14)

Consider the rounds in which u is shortlisted and u1 or u2 (or both) and the edge-weight is at
least w. Partition them into consecutive subsequences of the rounds that shortlist u, regardless the
edge-weights. Let k1, k2, . . . , km be the lengths of the consecutive subsequences. By considering
the changes to αi(w) due to the rounds in the subsuequences, and any m − 1 rounds involving u
between the subsequences, one for each pair of neighboring subsequences, we get that:

αu(w) ≥ yu(w)−
ku(w)−1∑
i=0

b(i)︸ ︷︷ ︸
rounds in subsequences, 1st case of Eqn. (13)

+
1

2

m∑
i=2

k1+···+ki−1−1∑
j=0

a(i)︸ ︷︷ ︸
rounds in between, 2nd case of Eqn. (13)

= 1− p
(
ku(w)

)
−
ku(w)−1∑
i=0

b(`) (Eqn. (12), and ku(w) = k1 + · · ·+ km)

=

ku(w)−1∑
i=0

(
p(i)− p(i+ 1)− b(i)

)
(p(0) = 1)

≥
ku(w)−1∑
i=0

a(i) . (Eqn. (7))

This is the only place in our argument that uses Eqn. (11) about the online selection algorithm,
indirectly through Eqn. (12). We remark that in unweighted and vertex-weighted online bipartite
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matching, there is only one weight level w = 1 or w = wu of concern for any offline vertex u. Hence,
there is only a single subsequence with all rounds that shortlist u in the above argument. It suffices
to replace Eqn. (11) by the weaker property of semi-OCS.

Non-negativity of Gains. The non-negativity of offline gains follows from the above invariant.
The non-negativity of online gains follows by that ∆uβv = 0 for the dummy vertex u. Hence, the
offline neighbors u1, u2 shortlisted by Algorithm 7 have non-negative ∆u1βv,∆u2βv.

Γ-Approximate Equilibrium. The gains cumulated by the online and offline vertices satisfy
an approximate equilibrium condition in the sense that for any edge (u, v) ∈ E the total gain of u
and v is at least Γ times the edge weight wuv. By the definition of Algorithm 7, and by that ∆uβv
in Eqn. (10) is non-increasing in ku(w)’s, we have βv ≥ 2∆uβv even when we compute ∆uβv using
the final values of ku(w)’s. Hence:

αu + βv ≥
∫ ∞

0

ku(w)−1∑
i=0

a(i)dw + 2∆uβv (Eqn. (14))

=

∫ wuv

0

ku(w)−1∑
i=0

a(i)dw + 2

∫ wuv

0
b
(
ku(w)

)
dw (Eqn. (10))

≥ Γwuv . (Eqn. (8))

Then, consider an optimal matching M ⊆ E. Algorithm 7 is Γ-competitive because:

Alg =
∑
u∈L

αu +
∑
v∈R

βv

≥
∑

(u,v)∈M

(
αu + βv

)
≥ Γ

∑
(u,v)∈M

wuv .

Finally, we remark that the above analysis is mathematically equivalent an online primal dual
analysis under the framework of Devanur et al. [11] for online bipartite matching, and also Devanur
et al. [12] and Fahrbach et al. [18] for the edge-weighted case. We choose the above exposition to
avoid having to introduce the more general framework.

Combining Algorithm 7 with the improved 0.167-OCS from Theorem 10 in Section 5 surpasses
the state-of-the-art 0.508-competitive algorithm for edge-weighted online bipartite matching by
Fahrbach et al. [18].

Corollary 38. There is an two-choice greedy algorithm for edge-weighted online bipartite matching
that is at least 0.512-competitive.

6.4 A Variant of OCS and Edge-weighted Online Bipartite Matching

This subsection considers another online selection algorithm tailored for the relaxed condition in
Eqn. (11). Each element is associated with a flag 1 or 0, initialized uniformly at random. In each
round t, the algorithm samples an element e from E t uniformly at random to probe its flag. If its
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Algorithm 8 A variant of OCS designed for edge-weighted online bipartite matching

State variables: (for each element e)

• τe ∈
{

0, 1
}

; its initial value τ0
e is independently and uniformly at random.

For each round t:

1. Draw et ∈ E t uniformly at random.

2. If τet = 1, select et and let τet = 0.

3. Otherwise, select the other element in E t and set τet = 1.

flag is 1, the algorithm selects e and sets its flag to 0. Otherwise, the algorithm selects the other
element and sets e’s flag to 1. In other words, the algorithm randomly samples an element, lets its
flag decides the selection, and flips the flag. See Algorithm 8.

Theorem 39. Algorithm 8 ensures the selection probability in Eqn. (11) for:

p(k) = 2−k−min{k,d k+2
2
e} + k · 2−k−min{k,d k+3

2
e} .

Combining with Theorem 36 further improves the competitive ratio of edge-weighted online
bipartite matching.

Corollary 40. Algorithm 7, using Algorithm 8 for online selections, is at least 0.519-competitive
for edge-weighted online bipartite matching.

Preliminaries on Boolean Formula with Uniform Input. Algorithm 8 uses two kinds of
random bits that are sampled independently and uniformly: the initial flags (τ0

e )e∈E , and the
sampled elements (et)1≤t≤T . Viewing these random bits as boolean variables, we will represent
each selection event by an XOR clause, i.e., an XOR of a subset these boolean variables, their
negates, and the constant 1, such as X1⊕¬X2⊕X3⊕ 1. Next we introduce two properties related
to XOR clauses with uniform input.

Lemma 41. For any uniform and independent boolean variables and m XOR clauses such that
each variable is in at most one clause, the probability of satisfying all clauses equals 2−m.

Proof. This is because each clause independently holds with probability half.

Lemma 42. For any uniform and independent boolean variables and m XOR clauses such that
each variable is in at most two clauses, the probability of satisfying all clauses is at most 2−d

m
2
e.

Proof. Consider an undirected graph G = (V,E) in which the vertices V = {1, 2, . . .m} correspond
to clauses, and the edges correspond the boolean variables that appears in two clauses:

E =
{

(i, j)k : clauses i and j both involve variable k
}
.

Next, consider any maximal matching M of G. Let ` = |M | be the size of the matching. Let
U ⊆ V denote the set of m− 2` unmatched vertices (i.e., clauses). Since the matching is maximal,
the unmatched clauses do not share any variables. Hence, over the randomness of the variables not
in the matching M , the probability of satisfying all unmatched clauses equals 2−m+2` by Lemma 41.

Further, conditioned on any realization of the variables not in the matching M and over the
randomness of the variables in M , each pair of matched clauses hold with probability at most 1

2 .
Therefore, the probability of satisfying all clauses is at most 2−m+2` · 2−` = 2−m+`. The lemma

then follows by ` ≤ bm2 c.
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Selection Probabilities. We next develop a lemma about probability of not selecting an element
e conditioned on the sampled elements et’s. The proof of Theorem 39 will repeatedly use the lemma.

Lemma 43. For any element e and any k rounds t1 < t2 < · · · < tk involving e, conditioned on
any realization of et1 , · · · , etk , the probability that e is never selected in these k rounds is at most:

2−min{k,d k+2
2
e} .

Proof. We will prove a stronger result. If there are d distinct elements in the realized et1 , . . . , etk ,
then e is unselected in these rounds with probability at most:{

2−k if d = 1;

2−d
k+d
2
e if d ≥ 2.

We next introduce an XOR clause for each ti, 1 ≤ i ≤ k, so that not selecting e in these rounds
is equivalent to satisfying all k clauses. If round ti is the earliest among these k rounds that samples
element eti , i.e., eti 6= etj for any j < i, consider a clause that represents the value of flag τeti at
the beginning of round ti:τ

0
eti
⊕
(⊕

t<ti:eti∈Et 1(et = eti)
)

eti = e ;

1⊕ τ0
eti
⊕
(⊕

t<ti:eti∈Et 1(et = eti)
)

eti 6= e .

We shall refer to such clauses as type-A clauses.
Otherwise, suppose that element eti was most recently sampled in tj , i.e., eti = etj and eti 6= et`

for j < ` < i. Consider a clause that represents the parity of the number of times that flag τeti
flips between the two rounds, including the flip due to round tj , i.e.:

1⊕
(⊕

tj<t<ti:eti∈Et 1(et = eti)
)
.

We shall refer to such clauses as type-B clauses. It captures if the value of τe at the begining of ti
is the same as that at the beginning of round tj , and thus still leads to not selecting element e.

If d = 1, there are 1 type-A clause and k − 1 type-B clauses. Further, each variable appears in
at most one clause. It then follows by Lemma 41.

If d ≥ 2, there are d type-A clauses and k− d type-B clauses. First consider the type-B clauses
and the random variables corresponding to the sampled elements (et)1≤t≤T . Each of these variables
appears in at most two clauses. By Lemma 42 the probability of satisfying all these clauses is at

most 2−d
k−d
2
e. Further, each type-A clause has a unique variable τ0

eti
. Hence, over any realization

of the sampled elements, the probability of satisfying all d type-A clauses is 2−d. Combining the
two bounds proves the lemma.

Proof of Theorem 39. First recall the requirement of Eqn. (11). For any element and any consec-
utive subsequences of the rounds involving the element with lengths k1, k2, . . . , km, we will upper
bound the probability that Algorithm 8 never selects e in these rounds by:

p
( m∑
i=1

ki

)
+

1

2

m∑
i=2

k1+···+ki−1−1∑
j=0

a(j) ,

where:
p(k) = 2−k−min{k,d k+2

2
e} + k2−k−min{k,d k+3

2
e} ,
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and (a(j))j≥0 take values as in the optimal solution given by Theorem 33. Importantly:

a(0) ≈ 0.2403 > 0.24 .

Further recall a remark after Theorem 36 that the guarantee in Eqn. (11) holds almost trivially
for three or more consecutive subsequences and for two subsequences whose total lengths are more
than three. Hence, the proof will first handle the remaining cases before substantiating the remark.

One Subsequence. In this case the second term in Eqn. (11) disappears, so we will upper
bound the probability by p(k) alone. Suppose that t1, t2, . . . , tk are the rounds in the consecutive
subsequence. Consider the number of them that sample eti = e. If there are at least two, the flag
τe must be 1 in at least one of them, and by definition Algorithm 8 selects e there.

If exactly one out of the k rounds samples eti = e, which happens with probability k2−k over
the randomness of eti ’s, Lemma 43 indicates that the probability of never selecting e in the k − 1

rounds with eti 6= e, conditioned on the realized eti’s, is at most 2−min{k−1,d k+1
2
e}. Further, over the

randomness of the initial flag τe, the round with eti = e selects e with probability half, independent
to the realization of the other k − 1 rounds. In sum, this case happens with probability at most:

k2−k−min{k,d k+3
2
e} .

Finally, if none of the k rounds samples eti = e, which happens with probability 2−k over the
randomness of eti ’s, Lemma 43 indicates that the probability of never selecting e in these round is

at most 2−min{k,d k+2
2
e}. In sum, this case happens with probability at most:

2−k−min{k,d k+2
2
e} .

Summing the probability bounds in the last two cases gives exactly p(k).

Two Subsequences, Two Rounds. By Lemma 43, the probability of not selecting element e
in the two rounds is at most 1

4 It then follows by p(2) = 3
16 and by a(0) > 0.24.

Two Subsequences, Three or More Rounds. At least one subsequence must have at least two
rounds. If two neighboring rounds in the same subsequence both sample et = e, which happens with
probability 1

4 , flag τe must be 1 in one of them and Algorithm 8 selects e in that round. Otherwise,
Lemma 43 indicates that the probability of never selecting e in these three or more rounds is at
most 1

8 . In total, the probability is at most (1− 1
4)1

8 = 3
32 . It then follows by a(0) > 0.24.

Three or More Subsequences. Lemma 43 indicates that the probability of never selecting e
in these three or more rounds is at most 1

8 . It then follows by a(0) > 0.24, since the second term
in Eqn. (11) sum to at least a(0).

6.5 Multi-way Semi-OCS and Unweighted and Vertex-weighted Online Bipar-
tite Matching

This subsection introduces an algorithm Balance-OCS that combines an unbounded variant of
the Balance algorithm [25, 28] and a multi-way semi-OCS. The former assigns one unit of masses
to the offline neighbors of each online vertex. The latter then selects one of them to which the online
vertex will match. We shall analyze its competitive ratio in the unweighted and vertex-weighted
online bipartite matching problems.
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Algorithm 9 Balance-OCS

State variables: (for each offline vertex u)

• Total mass yu allocated to offline vertex u far; initially, yu = 0.

On the arrival of an online vertex v ∈ R:

1. Find threshold θ ∈ [0,∞) that satisfies Eqn. (16).

2. For each neighbor u, let xvu =
(
yu(θ)− yu

)+
be its mass in this round.

3. Match v to the neighbor that the multi-way semi-OCS selects, with xv as the mass vector
in this round.

Balance is parameterized by a non-increasing discounting function b : [0,+∞) → [0, 1]. For
each online vertex v, it continuously assigns one unit of masses to v’s neighbors,10 prioritizing the
ones with the largest discounted weight wub(yu) where yu denotes the total mass assigned to u so
far. To describe it as an algorithm instead of a continuous process, for any offline vertex u and any
threshold marginal utility θ ≥ 0, define:

yu(θ) = b−1
( θ

wu

)
. (15)

We will explain shortly how to interpret the algorithm if b is not continuous or is not strictly
increasing, i.e., when the inverse function is not well-defined. In any case, the discount function b
used by our algorithm is continuous and strictly monotone.

Define yu(θ) = 0 if wub(0) < θ, e.g., when θ > wu. Let z+ denote max{z, 0}. Then, we may
equivalently interpret the Balance algorithm as choosing a threshold θ such that:∑

u:(u,v)∈E

(
yu(θ)− yu

)+
= 1 , (16)

and then assigning mass
(
yu(θ)− yu

)+
to each vertex u.

For a discount function b whose inverse is not well-defined, let y−u (θ) = sup{y ≥ 0 : wub(y) < θ}
and y+

u (θ) = inf{y ≥ 0 : wub(y) > θ}. The Balance algorithm chooses an appropriate threshold
θ and choose yu(θ) ∈ [y−u (θ), y+

u (θ)] to satisfy Eqn. (16).
The original Balance algorithm cannot assign more than one unit of total mass to any offline

vertex, which introduces boundary considerations that complicate the above description. In our
setting, however, the masses are merely input of the multi-way semi-OCS, and therefore the total
mass of an offline vertex could be arbitrarily large.

Theorem 44. Suppose that p : [0,∞)→ [0, 1] is decreasing and differentiable, and p(0) = 1. Then,
unbounded Balance with a p-multi-way semi-OCS (Algorithm 9) is Γ-competitive for unweighted
and vertex-weighted online bipartite matching, where the competitive ratio Γ and the corresponding

10In the context of fractional online matching, Balance fractionally matches v to its neighbors.
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discount function b are from an optimal solution of the following continuous LP:

maximize Γ (Balance LP)

subject to a(y) + b(y) ≤ −p′(y) ∀y ≥ 0 (17)∫ y

0
a(z)dz + b(y) ≥ Γ ∀y ≥ 0 (18)

b(y′) ≤ b(y) ∀y′ ≥ y (19)

a(y), b(y) ≥ 0 ∀y ≥ 0

Proof. By the guarantee of p-multi-way semi-OCS, each offline vertex u is matched by unbounded
Balance with probability at least:

1− p
(
yu
)
.

Therefore, the expected total weight of the matched vertices is at least:

Alg
def
=
∑
u∈L

wu
(
1− p(yu)

)
.

Similar to the competitive analysis of the two-choice algorithm (Algorithm 7), for every online
vertex v we will distribute the increase of Alg between vertex v and its offline neighbors. Let αu
and βv be the distributed gain of any offline vertex u and any online vertex v. They are initially
zero. In the round of online vertex v, for each offline neighbor u, increase αu by:

wu

∫ yu+xvu

yu

a(z)dz ,

where yu is the value right before v arirves.
Further, let βv be:

βv
def
=

∑
u:(u,v)∈E

wu

∫ yu+xvu

yu

b(z)dz .

Feasibility of the Charging Rule. The total gain distributed above is upper bounded by the
increase in Alg because:∑

u:(u,v)∈E

wu

∫ yu+xvu

yu

(
a(z) + b(z)

)
dz ≤

∑
u:(u,v)∈E

wu

∫ yu+xvu

yu

−p′(z)dz (Eqn. (17))

=
∑

u:(u,v)∈E

wu

((
1− p(yu + xvu)

)
−
(
1− p(yu)

))
.

Invariant of Offline Gain. By definition, for any offline vertex u:

αu = wu

∫ yu

0
a(z)dz .

Invariant of Online Gain. For any online vertex v, since the algorithm prefers neighbors with
larger wub(yu) and assigns one unit of mass, we get that for any v’s neighbor u:

βv ≥ wub(yu) .

This holds for the final value of yu because yu only increase over time and the discount function b
is non-increasing.
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Γ-Approximate Equilibrium. The gains satisfy an approximate equilibrium condition in the
sense that for any edge (u, v), the total gain of u and v is at least Γ times the vertex-weight wu:

αu + βv ≥ wu
∫ yu

0
a(z)dz + wub(yu) (Invariants)

≥ Γwu . (Eqn. (18))

Then, for any optimal matching M ⊆ E, unbounded Balance is Γ-competitive because:

Alg ≥
∑
u∈L

αu +
∑
v∈R

βv

≥
∑

(u,v)∈M

(
αu + βv

)
≥ Γ

∑
(u,v)∈M

wu .

The LP in Theorem 44 has continuously many variables and constraints. Fortunately, we have
an explicit optimal solution for most natural p functions.

Theorem 45. Suppose that function p : [0,∞) → [0, 1] is decreasing, convex, and differentiable,
and p(0) = 1. Then, an optimal solution to the Balance LP is:

Γ =

∫ ∞
0

e−z
(
1− p(z)

)
dz ;

b(y) = −ey
∫ ∞
y

p′(z)e−zdz ∀y ≥ 0 ;

a(y) = −p′(y)− b(y) ∀y ≥ 0 .

The proof of this theorem is deferred to Appendix D.2.

Corollary 46. Unbounded Balance with the multi-way semi-OCS from Theorem 6 in Section 4
is at least 0.593-competitive for unweighted and vertex-weighted online bipartite matching.
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A Missing Proofs in Section 3

A.1 Positive Correlation in 3-Way Sampling without Replacement

Consider the following counter-example which shows that there could be positive correlation in
3-way (unweighted) sampling without replacement. The elements are integers from 1 to 9. It has
7 rounds:

E1 = E2 =
{

1, 4, 5
}
, E3 = E4 =

{
2, 6, 7

}
, E5 = E6 =

{
3, 8, 9

}
, E7 =

{
1, 2, 3

}
.

Recall that U t denotes the subset of unselected elements after round t, and thus e ∈ U t denotes
the event that element e remains unselected after round t. Further U = U7 denotes the subset of
unselected elements at the end. On the one hand:

Pr
[
1, 2 ∈ U

]
= Pr

[
s1, s2 6= 1

]
Pr
[
s3, s4 6= 2

]
Pr
[
s5, s6 6= 3

]
Pr
[
s7 = 3 | 1, 2, 3 ∈ U6

]
=
(1

3

)4
=

1

81
.

On the other hand:

Pr
[
1 ∈ U

]
= Pr

[
s1, s2 6= 1

](
Pr
[
s3, s4 6= 2

]
Pr
[
s5, s6 6= 3

]
Pr
[
s7 6= 1 | 1, 2, 3 ∈ U6

]
+ Pr

[
s3, s4 6= 2

]
Pr
[
3 ∈

{
s5, s6

}]
Pr
[
s7 6= 1 | 1, 2 ∈ U6, 3 /∈ U6

]
+ Pr

[
2 ∈

{
s3, s4

}]
Pr
[
s5, s6 6= 3

]
Pr
[
s7 6= 1 | 1, 3 ∈ U6, 2 /∈ U6

])
=

1

3

(
1

3
· 1

3
· 2

3
+

1

3
· 2

3
· 1

2
+

2

3
· 1

3
· 1

2

)
=

8

81
.

Further by symmetry:

Pr
[
2 ∈ U

]
=

8

81
.

Therefore:
Pr[1, 2 ∈ U ]

Pr[1 ∈ U ]Pr[2 ∈ U ]
=

81

64
> 1 .

A.2 Proof of Theorem 4

We shall construct a distribution of instances and prove the desired probability bound holds on
average. By considering an appropriate distribution of instance, we ensure that the randomness of
the instance dictates the selection result.

Consider elements E = {e0
1 = 1, e0

2 = 2, . . . , e0
2k

= 2k}. Further for i from 1 to k, recursively

define eij to be either ei−1
2j−1 or ei−1

2j uniformly at random. The instance has pairs {ei2j−1, e
i
2j} for all

0 ≤ i ≤ k− 1 and all 1 ≤ j ≤ 2k−i, in ascending order of i; the order with respect to j for any fixed
i is unimportant yet for concreteness we define it to be in ascending order as well.

In other words, this is a knockout-tournament-like instance. First partition the 2k elements into
2k−1 pairs in lexicographical order. We shall refer to these pairs as the first stage of the instance.
Then, a randomly chosen “winner” from each pair advances to the next stage. Repeat this process
until we have the final “winner”, denoted as ek1 by the construction above. We shall refer to the
pairs defined with respect to elements ei−1

j , 1 ≤ j ≤ 2k−i+1, as the i-th stage of the instance. For

example, consider 23 elements {1, 2, . . . , 8}. A possible realization of the random instance proceeds
as {1, 2}, {3, 4}, {5, 6}, {7, 8}, {1, 3}, {5, 8}, {3, 5}. See Figure 1 for an illustration.

Next we show that with probability at least 2−2k+1, the final “winner” ek1 is never selected by
the algorithm, despite its k appearances. Here the probability space is over both the randomness
of the algorithm and that of the instance. In fact, we shall inductively prove the following stronger
invariant; the above claim is the special case when i = k.
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Figure 5: Knockout tournament-like input sequence.

Invariant: For any 1 ≤ i ≤ k, after processing the pairs involving elements ei−1
j ’s, i.e., after the

first i stages of the tournament, all elements eij , 1 ≤ j ≤ 2k−i, in the next stage remain unselected
with probability at least:

2−2k+2k−i
.

The base case when i = 0 is vacuously true.
Next suppose that the invariant holds for i − 1, and consider the case of i. Below are a set of

sufficient conditions under which all elements eij are unselected after the first i stages:

1. for any 1 ≤ j ≤ 2k−i+1, ei−1
j is unselected after the first i− 1 stages;

2. for any 1 ≤ j ≤ 2k−i, eij ∈ {e
i−1
2j−1, e

i−1
2j } is not the one selected by the algorithm for the pair.

By the construction of the random instance, the two events are independent. The first holds with
probability at least 2−2k+2k−i+1

by the inductively hypothesis. The second holds with probability
2−2k−i

by the construction of the random instance. Hence, the probability that all elements eij
remain unselected after the first i stages is at least:

2−2k+2k−i+1 · 2−2k−i
= 2−2k+2k−i

.

B Missing Proofs in Section 4

B.1 Proof of Lemma 7

Both sides equal 1 when x = 0. The rest of the proof considers 0 < x < 1. Let t = y
x . We have:

x

1− x
w(y) + 1− w(y + x)

w(y)
=

x

1− x
w(tx) + 1− w(tx+ x)

w(tx)

=

∫ x

0

(
B(x′, t)w(tx′)−A(x′, t)

w(tx′ + x′)

w(tx′)

)
dx′

=

∫ x

0
B(x′, t)w(tx′)

(
1− A(x′, t)w(tx′ + x′)

B(x′, t)w(tx′)2

)
dx′

=

∫ x

0
B(x′, t)w(tx′)

∫ x′

0

C(x′′, t)w(tx′′ + x′′)

B(x′′, t)2w(tx′′)2
dx′′dx′,
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where:

Q(x) =
1

w(x)

dw(x)

dx
= 1 + x+ 3cx2 ,

A(x, t) = (t+ 1)Q(tx+ x)− tQ(tx) ,

B(x, t) =
1

(1− x)2
+

tx

1− x
Q(tx) ,

C(x, t) = A(x, t)
dB

dx
(x, t)−B(x, t)

dA

dx
(x, t)−A(x, t)B(x, t) ((t+ 1)Q(tx+ x)− 2tQ(tx)) .

To prove the lemma, i.e.:
w(y + x)

w(y)
≤ x

1− x
w(y) + 1 ,

for any 0 < x < 1 and y ≥ 0, we only need to prove C(x, t) ≥ 0 for any 0 < x < 1 and any t ≥ 0.
It is equivalent to show that for any x, t ≥ 0:

(x+ 1)6

x
C

(
x

1 + x
, t

)
≥ 0 .

By computation:

(x+ 1)6

x
C

(
x

1 + x
, t

)
=

8∑
i=0

xiPi(t) ,
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where

P0(t) =− 18ct2 − 18ct− 6c

+ 6t2 + 2,

P1(t) =12ct3 − 126ct2 − 126ct− 42c

+ 8t3 + 36t2 + 17,

P2(t) =42ct4 + 54ct3 − 408ct2 − 390ct− 126c

+ 5t4 + 38t3 + 88t2 + 5t+ 64,

P3(t) =54c2t5 − 27c2t4 − 144c2t3 − 135c2t2 − 54c2t− 9c2

+ 36ct5 + 156ct4 + 36ct3 − 780ct2 − 672ct− 204c

+ 2t5 + 17t4 + 72t3 + 115t2 + 30t+ 139,

P4(t) =63c2t6 + 135c2t5 − 306c2t4 − 729c2t3 − 594c2t2 − 225c2t− 36c2

+ 21ct6 + 75ct5 + 183ct4 − 117ct3 − 882ct2 − 654ct− 180c

+ 6t5 + 21t4 + 72t3 + 91t2 + 74t+ 190,

P5(t) =72c2t7 − 144c2t5 − 783c2t4 − 1242c2t3 − 927c2t2 − 342c2t− 54c2

+ 42ct6 + 42ct5 + 96ct4 − 174ct3 − 510ct2 − 300ct− 66c

+ 6t5 + 11t4 + 44t3 + 49t2 + 96t+ 167,

P6(t) =81c3t8 − 162c3t7 − 459c3t6 − 405c3t5 − 162c3t4 − 27c3t3

+ 72c2t7 − 63c2t6 − 171c2t5 − 531c2t4 − 801c2t3 − 603c2t2 − 225c2t− 36c2

+ 21ct6 + 3ct5 + 57ct4 − 51ct3 − 66ct2 + 12ct+ 18c

+ 2t5 + 2t4 + 18t3 + 19t2 + 69t+ 92,

P7(t) =54c2t5 − 27c2t4 − 144c2t3 − 135c2t2 − 54c2t− 9c2

+ 30ct4 + 12ct3 + 60ct2 + 66ct+ 24c

+ 4t3 + 4t2 + 26t+ 29,

P8(t) =18ct2 + 18ct+ 6c

+ 4t+ 4.

When c = 4−2
√

3
3 , we can verify, using numerical computation software, that Pi(t) has positive

leading coefficient and no non-negative real roots for i = 1, 2, . . . , 8, and:

P0(t) =
(

4
√

3− 6
)(

1−
√

3t
)2
≥ 0 .

Therefore, for any x, t ≥ 0:
(x+ 1)6

x
C

(
x

1 + x
, t

)
≥ 0 .

So the lemma holds.

B.2 Proof of Lemma 8

We will use the following lemma which follows by the definition of the weight function w in Eqn. (1).

Lemma 47. Function log ◦w is convex in [0,∞).
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If
∑k

i=1 xi ≥ 1, the left-hand-side is zero so the inequality holds trivially. If
∑k

i=1 xi = 0, both

sides are equal to 1 so the inequality also holds. The rest of the proof consider 0 <
∑k

i=1 xi < 1.
Fix any non-negative y1, y2, . . . , yk ≥ 0. Define function f : [0,+∞)k → (−∞,+∞) over

x = (x1, x2, . . . , xk) be the difference between the logarithms of the two sides, i.e.:

f(x) = log
1−

∑k
i=1 xi∑k

i=1 xiw(yi) + 1−
∑k

i=1 xi
−

k∑
i=1

log
w(yi)

w(yi + xi)
.

We first argue that f is convex over a simplex, using the log-convexity of the weight function
w (Lemma 47). Consider any x = (x1, . . . , xk),x

′ = (x′1, . . . , x
′
k) ∈ [0,+∞)k such that:

k∑
i=1

xi =
k∑
i=1

x′i .

Then, for any t ∈ [0, 1] and the linear x′′ = tx+ (1− t)x′, we have:

tf(x) + (1− t)f(x′) = log

(
1−

k∑
i=1

xi

)
− t log

(
k∑
i=1

xiw(yi) + 1−
k∑
i=1

xi

)

− (1− t) log

(
k∑
i=1

x′iw(yi) + 1−
k∑
i=1

xi

)

−
k∑
i=1

logw(yi) +
k∑
i=1

(
t logw(yi + xi) + (1− t) logw(yi + x′i)

)
.

By the log-convexity of w, and by Jensen’s inequality on the second and third terms and on the
last two terms, this is at least:

log

(
1−

k∑
i=1

xi

)
− log

(
k∑
i=1

x′′iw(yi) + 1−
k∑
i=1

xi

)
−

k∑
i=1

logw(yi) +
k∑
i=1

logw(yi + x′′i ) = f(x′′) .

Therefore, we have:

f(x) ≤ 1∑k
i=1 xi

k∑
i=1

xif
(

0, . . . , 0,

k∑
j=1

xj︸ ︷︷ ︸
i-th entry

, 0, . . . , 0
)

(convexity of f on simplex)

=
1∑k
i=1 xi

k∑
i=1

xi

(
log

w(yi +
∑k

j=1 xj)

w(yi)
− log

( ∑k
j=1 xj

1−
∑k

j=1 xj
w(yi) + 1

))

≤ 0 . (Lemma 7)

B.3 A Weaker Version of Lemma 7

The following lemma is a weak version of Lemma 7. We provide it and a proof that does not involve
computer-aided numerical verification.
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Lemma 48. For any y ≥ 0 and any 0 < δ < 1:

exp
(

(y + δ) +
(y + δ)2

2
+

(y + δ)3

6

)
≤ exp

(
y +

y2

2
+
y3

6

)
+

δ

1− δ
exp

(
2y + y2 +

y3

3

)
.

Proof. The inequality holds with equality when δ = 0. Hence, it suffices to consider the partials of
both sides with respect to δ, and to show that the partial of the right-hand-side is larger, i.e.:(

1 + (y + δ) +
(y + δ)2

2

)
exp

(
(y + δ) +

(y + δ)2

2
+

(y + δ)3

6

)
≤ 1

(1− δ)2
exp

(
2y + y2 +

y3

3

)
.

Taking logarithm of both sides and rearrange terms, it is equivalent to:

ln
(

1 + (y + δ) +
(y + δ)2

2

)
+ 2 ln

(
1− δ

)
≤ (y − δ) +

(y − δ)2

2
+

(y − δ)3

6
− δ2 − yδ2 .

Since ln(1− δ) ≤ −δ− δ2

2 −
δ3

3 −
δ4

4 for all 0 < δ < 1, after an rearrangement of terms it suffices
to show that:

ln
(

1 + (y + δ) +
(y + δ)2

2

)
≤ (y + δ) +

(y − δ)2

2
+
y3

3
+

2δ3

3
− (y + δ)3

6
+
δ4

2
.

By the inequality of arithmetic and geometric means:

(y − δ)2

2
+
δ4

2
≥
∣∣y − δ∣∣δ2 .

Hence, we arrive at the final inequality that is sufficient for establishing the inequality regarding
the partial derivatives with respect to y and thus, the correct of the lemma:

ln
(

1 + (y + δ) +
(y + δ)2

2

)
≤ (y + δ) +

∣∣y − δ∣∣δ2 +
y3

3
+

2δ3

3
− (y + δ)3

6
. (20)

Roadmap of Proving Eqn. (20). The naural next step is to upper bound ln
(
1 + x+ x2

2

)
by a

polynomial of x to tranform the left-hand-side of the inequality a polynomial over y and δ, just like
the right-hand-side. The Taylor series ln

(
1 + x+ x2

2

)
= x− x3

6 + x4

8 −
x5

20 +O(x7) suggests natural

upper bounds such as ln
(
1 +x+ x2

2

)
≤ x and ln

(
1 +x+ x2

2

)
≤ x− x3

6 + x4

8 . Unfortuantely, neithor
of these bounds proves Eqn. (20) for all y ≥ 0 and all 0 < δ < 1. In particular, the former fails
when δ = y, and the latter leaves a degree-4 term that cannot be bounded by the right-hand-side
of Eqn. (20) for sufficiently large y. Instead, we shall consider three polynomial upper bounds of

ln
(
1 + x + x2

2

)
depending on the range of x and together they cover all the cases. These upper

bounds are from the next lemma, whose proof is deferred to the end of the subsection.

Lemma 49. The function:

x− ln(1 + x+ x2

2 )

x3
.

is decreasing for x > 0
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Case 1: Use ln
(
1 + x+ x2

2

)
≤ x for x ≥ 0, when y ≥ (1 + 3

√
2)δ. In other words, by inequality

ln
(
1 + (y + δ) + (y+δ)2

2

)
≤ y + δ and y > δ, Eqn. (20) reduces to:

y3

6
− y2δ

2
+
yδ2

2
− δ3

2
≥ 0 ,

or equivalently: (y
δ

)3
− 3
(y
δ

)2
+ 3

y

δ
− 3 =

(y
δ
− 1
)3
− 2 ≥ 0 .

We remark that this approach can also prove Eqn. (20) for y ≤ cδ for c ≈ 0.83. We skip it since
it is covered by the other cases.

Case 2: Use ln
(
1 + x+ x2

2

)
≤ x− x3

24 for 0 ≤ x ≤ 7
3 , if y+ δ ≤ 7

3 . The stated inequality follows
by Lemma 49 and that for x = 7

3 :

x− ln(1 + x+ x2

2 )

x3
≈ 0.0419 >

1

24
.

By ln
(
1 + (y + δ) + (y+δ)2

2

)
≤ y + δ − (y+δ)3

24 , Eqn. (20) reduces to:∣∣y − δ∣∣δ2 +
y3

3
+

2δ3

3
− (y + δ)3

8
≥ 0 .

If y ≥ δ, the left-hand-side equals:

5

24
y3 − 3

8
y2δ +

5

8
yδ2 − 11

24
δ3 =

1

24

(
y − δ

)(
5y2 − 4yδ + 11δ2

)
≥ 0 .

If y < δ, the left-hand-side equals:

5

24
y3 − 3

8
y2δ − 11

8
yδ2 +

37

24
δ3 =

1

24

(
δ − y

)(
37δ2 + 4δy − 5y2

)
≥ 0 .

Case 3: Use ln
(
1 + x+ x2

2

)
≤ x− x3

36 for 0 ≤ x ≤ 2 + 3
√

2, if 7
3 ≤ y + δ ≤ 2 + 3

√
2. The stated

inequality follows by Lemma 49 and that for x = 2 + 3
√

2:

x− ln(1 + x+ x2

2 )

x3
≈ 0.028 >

1

36
.

The argument for this case combines the assumption of y+ δ > 7
3 and that 0 < δ < 1 to derive:

y >
4

3
δ .

By ln
(
1 + (y + δ) + (y+δ)2

2

)
≤ y + δ − (y+δ)3

36 and by y > δ, Eqn. (20) reduces to:

(y − δ)δ2 +
y3

3
+

2δ3

3
− 5(y + δ)3

36
≥ 0 .

Rearranging terms, the left-hand-side equals:

7

36
y3 − 5

12
y2δ +

7

12
yδ2 − 17

36
δ3 =

1

144

(
5y − 6δ

)2
y +

1

48

(
y2 − δ2

)
y +

17

48
δ2
(
y − 4

3
δ
)
≥ 0 .

The three cases cover all y ≥ 0 and 0 < δ < 1 since the last two cases prove the lemma for any
y, δ that satisfies y + δ ≤ 2 + 3

√
2. For any y, δ with y + δ > 2 + 3

√
2 (and 0 < δ < 1) must satisfy

y > (1 + 3
√

2)δ and therefore is covered by the first case.
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Proof of Lemma 49. We shall prove that the derivative is non-positive, i.e.:

d

dx

x− ln(1 + x+ x2

2 )

x3
=

3

x4

(
ln
(
1 + x+

x2

2

)
− x+

x3

6(1 + x+ x2

2 )

)
≤ 0 .

Equivalently, we need to show that:

ln
(
1 + x+

x2

2

)
− x+

x3

6(1 + x+ x2

2 )
≤ 0 .

Since this holds with equality at x = 0, it suffices to prove that its derivative is non-positive.
This follows by:

d

dx

(
ln
(
1 + x+

x2

2

)
− x+

x3

6(1 + x+ x2

2 )

)
= − x3(1 + x)

6(1 + x+ x2

2 )2
≤ 0 .

C Missing Proofs in Section 5

C.1 Proof of Lemma 15

It suffices to show that the pseudo-paths are pairwise disjoint. Consider an arc (p, c) and a pseudo-
path P that involves it. It is clear that (p, c) can be adjacent with at most two arcs: the other
in-arc of c (if exists) and the other out-arc of p (if exists). As P is maximal, if c has another in-arc
in Gex-ante, it should be adjacent to (p, c) in P . Similarly, if p has another out-arc (p, c′) in Gex-ante

such that rounds p, c, c′ have a common element, it should also be adjacent to (p, c) in P . Therefore,
for any arc (p, c), the set of its adjacent arcs in any P is fixed according to the ex-ante dependence
graph. Hence, for any arc (p, c), there is a unique pseudo-path in the collection that involves it.

C.2 Proof of Lemma 16

By the definition of good forests, pseudo-paths and pseudo-matchings, the following statements are
equivalent:

1. A subgraph of the ex-ante dependence graph is a good forest.

2. A subgraph satisfies: each node has at most one in-arc; and there is no node p with two
out-arcs (p, c) and (p, c′) such that rounds p, c, c′ have a common element.

3. A subgraph is a union of pseudo-matchings, one for each pseudo-path.

In particular, the equivalence between the first two follows by the definition of good forests. The
equivalence between the last two follows by the definitions of pseudo-paths and pseudo-matchings.

C.3 Proof of Lemma 17

Lemma 50. For any three different rounds 1 ≤ p < c < c′ ≤ T such that (p, c), (p, c′) ∈ Eex-ante

and all rounds have a common element, rounds p, c′ have the same set of elements, i.e., Ep = Ec′.

Proof. Suppose Ep = {a, b} and the subscript of (p, c) is a. Then the subscript of (p, c′) is b. Since
c′ is first round involving element b after round p, we have b /∈ Ec. Further by that p, c, c′ have a
common element, the common element can only be a. In sum, Ec′ = {a, b} = Ep.
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We shall prove the lemma by contradiction. Suppose for contrary that there is a pseudo-path
P and 1 ≤ t ≤ T such that the subset of arcs in P that arrive in the first t rounds is not a sub-
pseudo-path. Since all arcs in P arrive after round T and form a single pseudo-path, there must
be a round t′ > t such that in-arcs of t′ concatenate two sub-pseudo-paths.

Because of the definition of pseudo-paths and Lemma 15, for each round t, the in-arcs of t are
simultaneously added into a pseudo-path such that they are adjacent in the pseudo-path. As a
result, there are only two possibilities of the concatenation:

1. If t′ has only one in-arc, this in-arc is next to only at most one other arc in the pseudo-path
by definition. Hence, it cannot concatenate two sub-pseudo-paths.

2. If t′ has two in-arcs (p, t′), (p′, t′) and it concatenates two sub-pseudo-paths together in round
t′, there must be c, c′ < t′ such that (p, c), (p′, c′) ∈ P , and further rounds p, c, t′ must have a
common element and rounds p′, c′, t′ must have a common element. By Lemma 50, we have
Ep = E t = Ep′ . If p 6= p′, the in-arc from the earlier one, e.g., (p, t′) shall not exist in the
ex-ante dependence graph by definition. If p = p′, on the other hand, arcs (p, c) (p′, c) do
not exist in the ex-ante dependence graph. In fact, they shall be two parallel arcs (p, t′) that
form a pseudo-path on their own, like the right-most pseudo-path in Figure 3a.

In sum, there is always a contraction in all cases.

C.4 Proof of Lemma 18

With the rows and columns in the order of qU, qU2 , qM, the transition matrices P+ of σ+ and P−

of σ− are as follows:

P+ =

0 1− p p
0 0 1
1 0 0

 , P− =

0 0 1
1 0 0
p 1− p 0

 .

Then, the proof of the stationary distribution follows from the next two equations:

πP+ =

(
1

3− p
, (1− p) · 1

3− p
, p · 1

3− p
+

1− p
3− p

)
=

(
1

3− p
,
1− p
3− p

,
1

3− p

)
= π ,

πP− =

(
1− p
3− p

+ p · 1

3− p
, (1− p) · 1

3− p
,

1

3− p

)
=

(
1

3− p
,
1− p
3− p

,
1

3− p

)
= π .

C.5 Proof of Lemma 19

By the definitions of σ+ and σ−, the state sequences determine the corresponding choice sequence,
i.e. qi = qM if and only if di = M and q̂i = qM if and only if d̂i = M. Therefore, it suffices to show
that the distributions of the state sequences (qi)0≤i≤` and (q̂i)0≤i≤` are the same.

With the chain rule:

Pr[q0, . . . , q`] =
∏̀
i=0

Pr[qi
∣∣q0, . . . , qi−1] ,

Pr[q̂0, . . . , q̂`] =
∏̀
i=0

Pr[q̂i
∣∣q̂0, . . . , q̂i−1] .
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It suffices to show that for any 1 ≤ i ≤ `:

Pr[qi
∣∣q0, . . . , qi−1] = Pr[q̂i

∣∣q̂0, . . . , q̂i−1] .

The case when i = 0 follows by Lemma 18, i.e., by that states q0, q̂0 both follow the common
stationary distribution of σ+, σ−. Next, we consider the other conditional probabilities.

For i0 ≤ i ≤ `, it follows directly from the memoryless property of probabilistic automata:

Pr[qi
∣∣q0, . . . , qi−1] = Pr[qi

∣∣qi−1] = Pr[q̂i
∣∣q̂i−1] = Pr[q̂i

∣∣q̂0, . . . , q̂i−1] .

For 1 ≤ i < i0, the memoryless property still holds for qi. On the other hand, it can be deduced
that the memoryless property also holds for q̂i:

Pr[q̂i
∣∣q̂0, . . . , q̂i−1] =

Pr[q̂0, . . . , q̂i]

Pr[q̂0, . . . , q̂i−1]

=
Pr[q̂0, . . . , q̂i−2

∣∣q̂i−1, q̂i] ·Pr[q̂i−1, q̂i]

Pr[q̂0, . . . , q̂i−2
∣∣q̂i−1] ·Pr[q̂i−1]

= Pr[q̂i
∣∣q̂i−1] .

It remains to verify that the joint distributions of state pairs (qi, qi−1) and (q̂i, q̂i1) are identical,
which follows by:

diag(π)P+ =

0 1− p p
0 0 1− p
1 0 0

 =
(

diag(π)P−
)T

.

C.6 Proof of Lemma 23

By Lemma 20, to show the first equation it suffices to show for any i ≤ j:

Pr[qj = qM|qi = qM] = fi−j .

The proof is an induction that corresponds to the recurrence. First consider the base cases.
The case when j = i is trivial. The case when j = i + 1 holds because qi = qM implies qi+1 = qU
by the definition of σ+. The case when j = i + 2 holds because qi = qM implies qi+1 = qU, from
which σ+ transition to qi+2 = qM with probability p by definition.

Finally consider the case when j ≥ i + 3. There are only two possibilities in the two rounds
after i. The first case is qi+1 = qU and qi+2 = qM, which happens with with probability p, and after
which qj = qM with probability fj−i−2 by the inductive hypothesis. The other case is qi+1 = qU,
qi+2 = qU2 , and qi+3 = qM, which happens with with probability 1 − p, and after which qj = qM
with probability fj−i−3 by the inductive hypothesis. Putting together:

Pr[qj = qM|qi = qM] = p · fj−i−2 + (1− p) · fj−i−3

= fj−i .

Further, according to the definition of σ+, qi = qU2 if and only if qi+1 = qM while qi = qU if and
only if qi−1 = qM. Thus, it follows that:

Pr
[
dj = M | qi = qU2

]
= Pr

[
dj = M | qi+1 = qM

]
= fj−i−1 ,

Pr
[
dj = M | qi = qU

]
= Pr

[
dj = M | qi−1 = qM

]
= fj−i+1 .
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C.7 Proof of Lemma 24

By the recurrence, the first seven terms of the sequence {fk} are:

f0 = 1 , f1 = 0 , f2 = p , f3 = 1− p ,
f4 = p2 , f5 = 2p(1− p) , f6 = p3 + (1− p)2 .

As a result of p ≥
√

5−1
2 , f2 = p, f4 = p2 ≥ f3 = 1−p. For any k ≥ 5, as fk = pfk−2+(1−p)fk−3,

it is easy to see that fk ≥ f3 = 1− p by induction.
On the other hand, as f6 = pf4 + (1 − p)f3 and f4 ≥ f3, f6 ≤ f4. Further, as p ≤ 2

3 ,
f5 = 2p(1 − p) ≥ p2 = f4 ≥ f6. For any k ≥ 7, as fk = pfk−2 + (1 − p)fk−3, it is easy to see that
fk ≥ f6 = p3 + (1− p)2 by induction.

C.8 Proof of Lemma 25

Consider any element e, any subset of nodes U ⊆ V involving e and any pseudo-path P =(
(ti, t

′
i)ei
)

1≤i≤`. Consider the subset that is the union of Eex-ante
U,e ∩ P and the subset of arcs in

P that are adjacent to two distinct arcs of Eex-ante
U,e ∩ P . Simply by definition, the first statement

holds for this subset. Note that any two adjacent arcs in P are either two in-arcs or two out-arcs
of a same node, any two adjacent arcs in P have different subscripts. Therefore any two arcs in
Eex-ante
U,e ∩ P are not adjacent in P and thus each maximal sub-pseudo-path satisfies the fourth

statement, i.e. it alternates between arcs with subscript e and arcs with other subscripts, and the
second statement, i.e. it is odd-length. Next, we shall show the third statement for this subset.

By definition of the subset and the fourth statement, it suffices to show that any two arcs with
subscript e cannot be two arcs apart in P . Since in-arcs of a node are added simultaneously into
the same pseudo-path in its corresponding round, the first arcs added into the pseudo-path should
be the out-arcs of a node, say the initiative node of P . Let i0 be the minimum index among the
first arcs of P . The initiative node is then t′i0 . Let {a, b} be the set of elements of initiative node,

i.e E t
′
i0 = {a, b}, and a be the subscript of the i0-th arc, i.e. ei0 = a. Then, the subscripts of arcs

in P on the pseudo-path can be characterized by the following lemma.

Lemma 51. The subscripts of arcs in P satisfies:

1. For any 1 ≤ i ≤ i0, the subscript of the i-th arc is a if and only if i0 − i is even; and

2. For any i0 < i ≤ `, the subscript of the i-th arc is b if and only if i− i0 is odd.

Proof. For 1 ≤ i ≤ i0, we shall prove some stronger results:

1. For any 1 ≤ i ≤ i0, the subscript of the i-th arc is a if and only if i0 − i is even;

2. For any 1 ≤ i ≤ i0, t′i involves element a;

3. For any 2 ≤ i ≤ i0, if i− i0 is odd, ti−1 = ti and otherwise t′i−1 = t′i.

We shall prove it by induction. The base case is that the subscript of the i0-th arc is a, t′i0 involves
a and that ti0−1 = ti0 . For any 1 ≤ i ≤ i0 − 1, given that the subscript of the i-th arc is a, t′i
involves a and ti−1 = ti, the subscript of the (i−1)-th arc can’t be a, as adjacent arcs have different
subscripts, and ti−2 6= ti−1 (if i ≥ 3), as each node has at most 2 our-arcs. Then it is clear t′i = t′i−1

and round ti = ti−1, t
′
i, t
′
i−1 have a common element. By Lemma 50, rounds ti−1, t

′
i−1 have the same

set of elements. Therefore t′i−1 involves a. On the other hand, given that the subscript of the i-th
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arc is not a, t′i involves a and t′i−1 = t′i, the subscript of the (i−1)-th arc is a, as t′i has two out-arcs
and one of them has subscript a, and t′i−2 6= t′i−1 (if i ≥ 3). Therefore, it is clear that t′i−1 involves
a and ti−2 = ti−1.

If i0 < `, i.e. there is another in-arc of the initiative node, for any i0 < i ≤ `, it follows the
symmetry with 1 ≤ i ≤ i0.

With the characterization of the subscripts, it is clear that for any i 6= i0 − 1, the subscripts of
i-th arc and (i + 3)-th arc are different. The last possible violation of the third statement is that
the (i0 − 1)-th arc of P and the (i0 + 2)-th arc of P have a common element. Note that these two
arcs are out-arcs of the origins of in-arcs of the initiative node because of the characterization, this
violation can be ruled out by the following lemma.

Lemma 52. If the two origins of in-arcs of the initiative node have a same element, i.e. E ti0 ∩
E ti0+1 6= ∅, at least one of them doesn’t extend another out-arc in later rounds.

Proof. If the two origins are the same, it is clear that the origin has already extended two out-arcs
and it can’t further extend. Otherwise, suppose the element is c. One of the origins have already
extended an out-arc with subscript c before round t′i0 and it can’t further extend.

C.9 Proof of Lemma 26

We shall prove a stronger claim that lets the left-hand-side probability be further conditioned on
an arbitrary realization of qim−1−4. This probability equals:

Pr
[
qim−1 = qU | Xi1 , . . . , Xim−1 = 0, qim−1−4

]
= Pr

[
qim−1 = qU | Xim−1 = 0, qim−1−4

]
.

By Bayes’ rule, it is further equal to:

Pr
[
qim−1 = qU | qim−1−4

]
Pr
[
qim−1 = qU | qim−1−4

]
+ Pr

[
qim−1 = qU2 | qim−1−4

] .
It remains to show that:

p ·Pr
[
qim−1 = qU | qim−1−4

]
≥ Pr

[
qim−1 = qU2 | qim−1−4

]
. (21)

Consider the transition matrix P+ of the automaton σ+, with columns and rows in the order
of qU, qU2 , and qM:

P+ =

0 1− p p
0 0 1
1 0 0

 .

The transition after four steps (from im−1 − 4 to im−1) is:

(
P+
)4

=

 p2 (1− p)2 2p(1− p)
p 0 1− p

1− p p(1− p) p2

 .

Since the first column multplied by p dominates the second column in every entry, we prove
Eqn. (21), and thus the lemma.
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C.10 Proof of Lemma 27

Consider the collection of all maximal tree-paths consisting of nodes in U .
Note that in the good forest, for any node p with two children c and c′, the corresponding

rounds have no common element. Since every node in U involves element e, for any node p ∈ U ,
at most one of its children is in U . Since the collection consists of maximal tree-paths consisting
of nodes in U , for any p, c ∈ U such that p is the parent of c, p is on one tree-path in the collection
if and only if c is on the tree-path. Therefore, for any node p and any tree-path in the collection,
the neighbors (i.e., parent or children) of p in the path is fixed. It is clear that any two distinct
tree-paths are disjoint. Moreover, if there is an arc (p, c) between nodes in distinct tree-paths, there
should be two tree-paths involving node p, which contradicts to the fact the tree-paths are pairwise
disjoint.

Consider one path in the collection consisting of nodes t1, t2, ·, tk ∈ U . For each 2 ≤ i ≤ k, if
arc (ti−1, ti) have subscript e, it is clear that the algorithm sets `ti(e) = `ti−1(e). Otherwise, as
both node ti−1 and ti involve e and the element corresponding to subscript of the arc, the label of
the other element in these nodes clearly imply `ti(e) = `ti−1(e). Therefore, element e has the same
label in each tree-path.

C.11 Proof of Lemma 28

By symmetry, consider label ` = H without loss of generality. The lemma holds vacuously for k ≥ 4
since by design the automaton never selects the same label four times in a roll.11 Next we prove
the cases of k = 1, 2, 3. The remaining argument lets qj denote the state after round j, and lets sj

denote the selected label in round j.
By the symmetry of automaton σ∗, for any round j:

Pr
[
qj = qH

]
= Pr

[
qj = qT

]
, Pr

[
qj = qH2

]
= Pr

[
qj = qT2

]
. (22)

Further, by the above symmetry and by:

Pr
[
qj = qH2

]
= Pr

[
qj−1 = qH

]
Pr
[
sj = H | qj−1 = qH

]
= Pr

[
qj−1 = qH

]1− β
2

,

Pr
[
qj = qH

]
≥ Pr

[
qj−1 = qT

]
Pr
[
sj = H | qj−1 = qT

]
= Pr

[
qj−1 = qT

]1 + β

2
,

we have:
Pr[qj = qH]

Pr[qj = qH2 ]
≥ 1 + β

1− β
. (23)

If k = 1, the symmetry implies that the marginal probability of selecting each label in round i
equals 1

2 .

11The longest identical sections are selecting H in three consecutive rounds from state T2.
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If k = 2, the probabilities of selecting T two consecutive times from each of the states are:

Pr
[
si = si+1 = T | qi−1 = qO

]
= Pr

[
si = T | qi−1 = qO

]
Pr
[
si+1 = T | qi = qT

]
=

1− β
4

,

Pr
[
si = si+1 = T | qi−1 = qH

]
= Pr

[
si = T | qi−1 = qH

]
Pr
[
si+1 = T | qi = qT

]
=

1− β2

4
,

Pr
[
si = si+1 = T | qi−1 = qT

]
= Pr

[
si = T | qi−1 = qT

]
Pr
[
si+1 = T | qi = qT2

]
= 0 ,

Pr
[
si = si+1 = T | qi−1 = qH2

]
= Pr

[
si = T | qi−1 = qH2

]
Pr
[
si+1 = T | qi = qO

]
=

1

2
,

Pr
[
si = si+1 = T | qi−1 = qT2

]
= 0 .

Hence:

Pr
[
si = si+1 = T

]
= Pr

[
qi−1 = qO

]1− β
4

+ Pr
[
qi−1 = qH

]1− β2

4
+ Pr

[
qi−1 = qH2

]1
2
.

By Eqn. (23), we further get that:

Pr
[
si = si+1 = T

]
≥ Pr

[
qi−1 = qO

]1− β
4

+ Pr
[
qi−1 = qH or qH2

](1 + β

2

1− β2

4
+

1− β
2

1

2

)
= Pr

[
qi−1 = qO

]1− β
4

+ Pr
[
qi−1 = qH or qH2

]((1 + β)2

2
+ 1
)1− β

4

=
(
Pr
[
qi−1 = qO

]
+ 2Pr

[
qi−1 = qH or qH2

])1− β
4

(β =
√

2− 1)

=
1− β

4
. (Eqn. (22))

If k = 3, the automaton must start from qH2 in order to selet T in three consecutive rounds.
The probability equals:

Pr
[
qi−1 = qH2

]
Pr
[
si = T | qi−1 = qH2

]
Pr
[
si+1 = T | qi = qO

]
Pr
[
si+2 = T | qi−1 = qT

]
.

The first term is at most 1−β
4 by Equations (22) and (23). The last three equal 1, 1

2 , and 1−β
2

respectively. Hence:

Pr
[
si = si+1 = si+2 = T

]
=

(1− β)2

16
<

(1− β)2

8
.

C.12 Proof of Lemma 29

It suffices to prove it for i = 2, since otherwise it reduces to the case of i = 2 by conditioning on
the state after round i − 2. Further, if the automaton starts from the original state qO, it follows
from Lemma 28. If the automaton starts from qH2 or qT2 , it resets back to the original state qO
after the first round and once again the lemma reduces to Lemma 28. Finally the lemma holds
vacuously for k ≥ 4 since automaton σ∗ never selects the same label in four consecutive rounds.

The remaining proof consider starting from qH and qT and k ∈ {1, 2, 3}. By symmetry, we
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consider label ` = H without loss of generality. If the automaton starts from qH:

Pr
[
s2 = T | q0 = qH

]
= Pr

[
s1 = H | q0 = qH

]
Pr
[
s2 = T | q1 = qH2

]
+ Pr

[
s1 = T | q0 = qH

]
Pr
[
s2 = T | q1 = qT

]
=

1− β
2
· 1 +

1 + β

2
· 1− β

2

=
1

2
; (β =

√
2− 1)

Pr
[
s2 = s3 = T | q0 = qH

]
= Pr

[
s1 = H | q0 = qH

]
Pr
[
s2 = T | q1 = qH2

]
Pr
[
s3 = T | q2 = qO

]
+ Pr

[
s1 = T | q0 = qH

]
Pr
[
s2 = T | q1 = qT

]
Pr
[
s3 = T | q2 = qT2

]
=

1− β
2
· 1 · 1

2
+

1 + β

2
· 1− β

2
· 0

=
1− β

4
;

Pr
[
s2 = s3 = s4 = T | q0 = qH

]
= Pr

[
s1 = H | q0 = qH

]
Pr
[
s2 = T | q1 = qH2

]
Pr
[
s3 = T | q2 = qO

]
Pr
[
s4 = T | q3 = qH

]
=

1− β
2
· 1 · 1

2
· 1− β

2

=
(1− β)2

8
.

The last case omits the s1 = T option because the automaton by design never selects T in four
consecutive rounds.

If the automaton starts from qT:

Pr
[
s2 = T | q0 = qT

]
= Pr

[
s1 = H | q0 = qT

]
Pr
[
s2 = T | q1 = qH

]
+ Pr

[
s1 = T | q0 = qT

]
Pr
[
s2 = T | q1 = qT2

]
=

1 + β

2
· 1 + β

2
+

1− β
2
· 0

=
1

2
; (β =

√
2− 1)

Pr
[
s2 = s3 = T | q0 = qT

]
= Pr

[
s1 = H | q0 = qT

]
Pr
[
s2 = T | q1 = qH

]
Pr
[
s3 = T | q2 = qT

]
=

1 + β

2
· 1 + β

2
· 1− β

2

=
1− β

4
. (β =

√
2− 1)

The second case omits the s1 = T option since automaton σ∗ cannot select T in three consecutive
rounds starting from state qT.

Finally, it is impossible to have s2 = s3 = s4 = T starting from state q0 = qT because from here
we cannot have q1 = qH2 , the only state of automaton σ∗ that could lead to selecting T in the next
three rounds.
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C.13 Proof of Lemma 30

Let qj , sj denote the states and selected labels of the first copy, and let q̂j , ŝj denote those of the
second copy. If the initial state is the original state qO, it follows by Lemma 28. If the initial state
is qH2 or qT2 , the lemma holds because the first selections in the two copies are the same.

By symmetry, we next without loss of generality that the initial state is q0 = q̂0 = qH. From qH
it is impossible to select H in the next two rounds, or to select T in the next three rounds. Hence,
the lemma follows if k ≥ 2 or k̂ ≥ 3. It remains to consider k = 1, and k̂ = 1, 2.

If k = k̂ = 1:

Pr
[
s1 = H, ŝ1 = T | q0 = q̂0 = qH

]
= Pr

[
s1 = H | q0 = qH

]
Pr
[
ŝ1 = T | q̂0 = qH

]
=

1− β
2

1 + β

2

<
1

4
.

If k = 1 and k̂ = 2:

Pr
[
s1 = H, ŝ1 = ŝ2 = T | q0 = q̂0 = qH

]
= Pr

[
s1 = H | q0 = qH

]
Pr
[
ŝ1 = ŝ2 = T | q̂0 = qH

]
=

1− β
2

1− β2

4

<
1− β

8
.

D Missing Proofs in Section 6

D.1 Proof of Theorem 33

Proof. We first verify the feasibility of the stated solution. Constraint (7) holds with equality by
the definitions of a(k) and b(k).

Constraint (8) also holds with equality. When k = 0, it follows by:

Γ = p(0)−
∞∑
i=0

((2

3

)i
−
(2

3

)i+1)
p(i) (Definition of Γ, p(0) = 1)

=
∞∑
i=0

(2

3

)i+1
p(i)−

∞∑
i=1

(2

3

)i
p(i)

=
∞∑
i=0

(2

3

)i+1(
p(i)− p(i+ 1)

)
. (24)

This equals 2b(0) by definition. Then, it further holds inductively for k ≥ 1 because:

b(k) =
3

2
b(k − 1)− 1

2

(
p(k − 1)− p(k)

)
(Definition of b(k), b(k − 1))

= b(k − 1)− 1

2
a(k − 1) . (Definition of a(k − 1))

That is, the left-hand-side of Constraint (8) stays the same from k − 1 to k. Since the above
equation b(k) = b(k − 1)− 1

2a(k − 1) would also imply Constraint (9) provided that a(k − 1) ≥ 0,
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it remains to verify that a(k) and b(k) are nonnegative. By its definition and by p(k + 1) ≤ 2
3p(k),

we get that b(k) ≥ 0. The non-negativity of a(k) follows by its definition and by:

b(k) =
1

3
p(k)−

∞∑
i=k+1

((2

3

)i−k−1
−
(2

3

)i−k)
p(i) (Definition of b(k))

≤ 1

3
p(k)

≤ p(k)− p(k + 1) . (p(k + 1) ≤ 2
3p(k))

Next we establish its optimality. Multiplying Constraint (8) by
(

2
3

)k
and summing over k ≥ 0:

∞∑
k=0

(2

3

)k( k−1∑
i=0

a(i) + 2b(k)
)
≥
∞∑
k=0

(2

3

)k
Γ .

Grouping terms on the left and dividing both sides by 3, this is:

∞∑
i=0

(2

3

)i+1
a(i) +

∞∑
i=0

(2

3

)i+1
b(i) ≥ Γ .

Further by Constraint (7), the left-hand-side is at most:

∞∑
i=0

(2

3

)i+1(
p(i)− p(i+ 1)

)
.

This equals the optimal Γ in the theorem by Eqn. (24).

D.2 Proof of Theorem 45

Proof. We first verify its feasibility. Constraint Eqn. (17) holds with equality by definition, i.e.:

a(y) + b(y) = −p′(y) , ∀y ≥ 0 . (25)

Constraint Eqn. (18) holds for y = 0 from integration by parts:

b(0) = −
∫ ∞

0
p′(z)e−zdz =

∫ ∞
0

e−z
(
1− p(y)

)
dz = Γ .

It further holds for y > 0 since its left-hand-side is a constant for all y. Indeed, the derivative
of the left-hand-side is:

a(y) + b′(y) = a(y)− ey
∫ ∞
y

p′(z)e−zdz + p′(y) (Definition of b(y))

= a(y) + b(y) + p′(y) (Definition of b(y))

= 0 . (Eqn. (25))

Constraint 19 holds, i.e., b(y) is decreasing because:

b′(y) = −ey
∫ ∞
y

p′(z)e−zdz + p′(y) (Definition of b(y))

= −ey
∫ ∞
y

(
p′(y)− p′(z)

)
e−zdz

≤ 0 . (Convexity of p)
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Finally, b(y) is non-negative by definition and by that p is decreasing. The non-negativity of
a(y) follows by:

a(y) = −p′(y) + ey
∫ ∞
y

p′(z)e−zdz (Definitions of a(y), b(y))

= ey
∫ ∞
y

e−zp′′(z)dz (Integration by parts)

≥ 0 . (Convexity of p)
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