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Abstract

We study the Ultrametric Violation Distance problem introduced by Cohen-Addad,

Fan, Lee, and Mesmay [FOCS, 2022]. Given pairwise distances x ∈ R(
[n]
2 )

>0 as input, the goal
is to modify the minimum number of distances so as to make it a valid ultrametric. In other
words, this is the problem of fitting an ultrametric to given data, where the quality of the fit
is measured by the ℓ0 norm of the error; variants of the problem for the ℓ∞ and ℓ1 norms are
well-studied in the literature.

Our main result is a 5-approximation algorithm for Ultrametric Violation Distance,
improving the previous best large constant factor (≥ 1000) approximation algorithm. We give
an O(min{L, log n})-approximation for weighted Ultrametric Violation Distance where
the weights satisfy triangle inequality and L is the number of distinct values in the input. We
also give a 16-approximation algorithm for the problem on k-partite graphs, where the input is
specified on pairs of vertices that form a complete k-partite graph. All our results use a unified
algorithmic framework with small modifications for the three cases.

{moses, ruiquan}@cs.stanford.edu
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1 Introduction

The study of ultrametrics arose in mathematics, in the work of Hensel introducing p-adic numbers
(although the name was proposed later by Krasner [Kra44]). These are metric spaces where the
distances between any three points i, j, k satisfy a stronger form of the triangle inequality (a.k.a.,
ultrametric inequality): d(i, k) ≤ max(d(i, j), d(j, k)). In the 1960s, ultrametrics found applications
in taxonomy [Har67, Joh67, JJS67, JS71] due to the natural correspondence between the classifi-
cation of objects (represented by a hierarchical clustering) and ultrametrics. (An ultrametric can
be represented by the shortest path distances between leaves in a rooted tree where the root-leaf
distances are equal for all leaves; the tree structure corresponds to a hierarchical clustering of the
leaves). Since then, ultrametrics have been studied and used in a wide range of fields, including biol-
ogy (e.g., [SS62, CE67]), physics (see the survey by [RTV86]), finance (e.g., [Man99]), and computer
science.

In this work, we consider the problem of fitting an ultrametric to given measurements of distances
between pairs of points – this is relevant to data-analysis settings where we have measurement noise,
errors, or incomplete data. The problem of fitting ultrametrics (and tree metrics) to observations
originally arose in phylogenetic analysis. It was introduced by Cavalli-Sforza and Edwards [CE67]
who were interested in minimizing the ℓ2 norm of the error, i.e., the difference between the recon-
structed ultrametric/tree distances and the input. Farris [Far72] proposed the problem of minimizing
the ℓ1 norm of the error. Subsequently, these problems were shown to be NP-hard [KM86, Day87].
Since those early results, the problem of fitting ultrametrics to given data, minimizing the ℓp norm
of the error (for various values of p) has been extensively studied in the computer science community
over the past three decades (see Section 1.3). The current best-known results include a polynomial-
time algorithm for the ℓ∞ norm [FKW93], an O(1)-approximation for the ℓ1-norm [CDK+21] and
an O((log n log log n)1/p)-approximation for ℓp norms, 1 < p <∞ [AC11].

Given the long history of the study of this family of ultrametric fitting problems, it is somewhat
surprising that the natural problem of minimizing the ℓ0 norm of the error was introduced and stud-
ied only very recently by [CFLM22]. This problem, called Ultrametric Violation Distance, is

the focus of our work. Given pairwise distances x ∈ R(
[n]
2 )

>0 , we study the problem of minimizing the
number of entries of x we need to modify to produce a valid ultrametric. This problem is a general-
ization of the well-studied Correlation Clustering problem1, which is equivalent to instances
with two distinct values in the input. Edges with the larger distance correspond to the − edges
and edges with the smaller distance correspond to the + edges in Correlation Clustering. An
optimal ultrametric for such instances corresponds to a partition into clusters.2 On the other hand,
Ultrametric Violation Distance can be viewed as a collection of Correlation Clustering
problems with hierarchical structure; this viewpoint was exploited in [CFLM22].

The previous best algorithm for Ultrametric Violation Distance was a large constant
factor approximation introduced by Cohen-Addad et al. [CFLM22]3. Their approach involves
new Correlation Clustering algorithms whose output has additional structure, similar to
the “clean” properties used by [BBC04] to obtain the first large constant factor approximation

1The input to Correlation Clustering is a complete graph with + and − labels on edges, intended to represent
similarity and dissimilarity of vertices. The goal is to output a disjoint partition into clusters which minimizes the
number of edges that are misclassified, i.e., the number of + edges that go across clusters and the number of − edges
that are inside clusters.

2Here, inter-cluster distances are set to the smaller value and intra-cluster distances are set to the larger value.
3the authors presented an 8,000,000 factor for their approach with unoptimized parameters, and they wrote, “it is

very likely that the current approach could easily lead to a 1000-approximation but at the expense of a more tedious
proof”.
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for Correlation Clustering. A natural idea for improvement is to use the pivot-based ap-
proach used in all the best known algorithms for Correlation Clustering [ACN08, CMSY15,
CLN22, CLLN23]: in each round, the algorithm chooses a random unclustered vertex as the pivot
and decides the set of vertices in its cluster; the algorithm proceeds until all vertices are clustered.
There are two natural instantiations of this approach:

Combinatorial : put all the + neighbors of the pivot in its cluster.

LP based : compute an optimal solution for an LP relaxation of Correlation Clustering,
interpret the variables as probabilities for pairs of vertices being in the same cluster and use
them for (randomly) determining cluster membership in the pivot approach.

The combinatorial version gave a 3-approximation, while the LP version initially gave a 2.5-
approximation.4 Cohen-Addad et al. [CFLM22] considered a (natural) analog of the combinatorial
version for Ultrametric Violation Distance, where they freeze distances to the pivot and
minimally modify the distances of other edges in each round, but showed a compelling negative
result: even for the best choice of pivot in each round, the algorithm can only give an Ω(log n)-
approximation on some instances. However, the hard instances leave open the possibility that we
can incorporate the LP-based version to obtain a good constant approximation for Ultrametric
Violation Distance. To construct the hard instances, they start with an ultrametric and carefully
contaminate some edges. Here, the pivot-based approach can potentially identify the contaminated
edges using an LP solution. Therefore, an interesting question to ask is

Can the pivot-based approach improve the approximation ratio for Ultrametric Violation
Distance by appropriately rounding the standard LP relaxation?

Our answer to this question is positive, and we give significantly improved approximation ratios for
Ultrametric Violation Distance and its variants, using this approach.

1.1 Our Results

Our main result is a 5-approximation for Ultrametric Violation Distance.

Theorem 1.1 (see Theorem 5.1). There exists a 5-approximation algorithm for Ultrametric
Violation Distance.

We also study a weighted variant of Ultrametric Violation Distance where the weights

satisfy the triangle inequality. Here, we are given an additional weight w ∈ R(
[n]
2 )

>0 , and the objective
function is the sum of wi,j for all edges (i, j) modified by the algorithm. We give an algorithm that
(slightly) improves the previous best O(log n log logn)-approximation [CFLM22] that also works
for general weights. Interestingly, the same approximation ratio is obtained by [CFLM22] for the
combinatorial pivot-based algorithm on (unweighted) Ultrametric Violation Distance.

Theorem 1.2 (see Theorem 6.1). There exists an O(min{L, log n})-approximation algorithm for
weighted Ultrametric Violation Distance where the weights satisfy the triangle inequality and
L is the number of distinct values in the input.

4later improved to a (2.06− ϵ)-approximation by [CMSY15] via a more elaborate treatment of the LP variables.
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An interesting corollary of this result is a constant factor approximation for a variant of weighted
Correlation Clustering with triangle inequality constraints5 because Correlation Clus-
tering problems are special cases of Ultrametric Violation Distance problems with L = 2.
To the best of our knowledge, this is the first O(1)-approximation for this variant of Correla-
tion Clustering. Assuming the Unique Games Conjecture, this result also separates weighted
Correlation Clustering with and without triangle inequality constraints.

Corollary 1.3. There exists an O(1)-approximation algorithm for weighted Correlation Clus-
tering where the weights satisfy the triangle inequality.

We consider another interesting variant of (unweighted) Ultrametric Violation Distance
with incomplete information, where the input distances are specified only on a subset of the edges.
In the absence of any structure on the specified edges, a special case is unweighted Correlation
Clustering on general graphs, which does not have an O(1)-approximation assuming the Unique
Games Conjecture [DEFI06, CKK+06]. We give a 16-approximation if the specified edges form a
complete k-partite graph. A similar setting has been studied in the literature on Correlation
Clustering [Ami04, AALZ12, CMSY15], culminating in a ratio of 3 on complete k-partite graphs.

Theorem 1.4 (see Theorem 7.1). There exists a 16-approximation algorithm for Ultrametric
Violation Distance on complete k-partite graphs.

1.2 Techniques

Pivot-based LP rounding algorithm. As is the case for Correlation Clustering (e.g.,
[CGW05, ACN08, CMSY15]) and for fitting ultrametric with ℓ1 objective [AC11, CDK+21], a
standard LP relaxation was introduced by Cohen-Addad et al. [CFLM22] to capture the objective
of (weighted) Ultrametric Violation Distance. This LP can be viewed as a hierarchical
generalization of the LP for Correlation Clustering, in which variables yℓ(i, j) are defined
for every edge (i, j) ∈

(
[n]
2

)
at every level ℓ ∈ [L]. Variables at the same level are subject to the

constraints of Correlation Clustering (constraint (1) below), and variables for the same edge
are monotonic with respect to the level (constraint (2) below). Formally, the LP relaxation is as
follows, where we define y0(i, j) = 0 for each edge (i, j) ∈

(
[n]
2

)
and define ℓ̃(i, j) as the input distance

level of (i, j). We refer the reader to Section 2.2 for more discussion of this LP relaxation.

minimize
∑

i ̸=j∈[n]

w(i, j) · (1− yℓ̃(i,j)(i, j) + yℓ̃(i,j)−1(i, j)) (UMVD LP)

subject to yℓ(i, j) ≤ yℓ(i, k) + yℓ(k, j) ∀ℓ ∈ [L], i, j, k ∈ [n] (1)
yℓ−1(i, j) ≤ yℓ(i, j) ∀ℓ ∈ [L], i, j ∈ [n] (2)
yℓ(i, j) ∈ [0, 1] ∀ℓ ∈ [L], i, j ∈ [n] (3)

Previous works [AC11, CDK+21, CFLM22] use this (or a very similar) LP relaxation as a hierarchy
of LP solutions for the Correlation Clustering problem. In this work, we build our algorithm
based on an alternative interpretation of the relaxation, using the LP variables for an edge as a
specification of a probability distribution on the distance value for that edge because we can always

5We note that this name is also used in previous works but for different settings. Previously, weighted Correla-
tion Clustering is defined by two weights w+

i,j and w−
i,j for each edge (i, j) ∈

(
[n]
2

)
. The objective function of the

problem is the sum of w+
i,j for all − edges in the output and w−

i,j for all + edges in the output. [ACN08] defines the
triangle inequality constraints to be w−

i,j + w−
j,k ≥ w−

i,k for any tuple (i, j, k). [ZW09]’s definition adds an additional
constraint w+

i,j + w−
j,k ≥ w+

i,k for each tuple. Both settings are incomparable with ours.
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find some optimal solution with yL(i, j) = 1. This interpretation enables us to naturally use pivot-
based algorithms to round the variables. More specifically, the algorithm starts with a recursive
call involving all vertices. In each recursive call, we choose a random pivot from the vertex set of
the call and decide the distance of edges that connect to the pivot according to the LP solution. To
determine these distances, we consider two different known rounding schemes:

Randomized rounding: we interpret the LP variables {yℓ(i, j)}ℓ∈[L] for each edge (i, j) as a com-
plementary cumulative distribution function (CCDF) for the distance of (i, j) and sample from
the distribution; a similar method was introduced for Correlation Clustering [ACN08] .

Deterministic rounding: we select the most probable outcome of the above distribution, breaking
ties arbitrarily; a similar method can be found in [CGW05] for Correlation Clustering.

Our algorithm uses a natural combination of these two schemes: if an edge’s distribution produces
a specific distance value with a high probability (close to 1), we call it a deterministic edge and use
the deterministic rounding; otherwise, we call it a random edge and use the randomized rounding
instead. After determining the distances of the edges connected to the pivot, we modify the distances
of the other edges minimally so that the ultrametric inequalities involving the pivot are satisfied.
Finally, we partition the non-pivot vertices into sets by grouping vertices with the same distance
from the pivot into the same set and recursively solve the smaller instances with these vertex sets.
These latter two steps can also be found in the pivot-based algorithm of [CFLM22] that gives an
O(min{L, log n})-approximation for Ultrametric Violation Distance.

One key benefit of distinguishing deterministic edges and random edges is that the ultrametric
inequality can be automatically satisfied in a triangle with three deterministic edges by the deter-
ministic rounding and appropriate choices of the parameters. This property and its generalizations
are frequently used in our analysis. Next, we present an example demonstrating how this property
is established.

Example. Consider an Ultrametric Violation Distance instance with L = 2 and
any three distinct vertices i, j, k ∈ [n]. Because we can w.l.o.g. assume yL(u, v) = 1 for any
distinct u, v ∈ [n], for simplicity, we can use a, b, c to denote the only variables y1(i, j), y1(i, k)
and y1(j, k). Consider that we deterministically round the distance of (i, j) to the larger
input distance if a > 2

3 and deterministically round the distance of (i, j) to the smaller input
distance if a < 1

3 . Suppose that the same rounding is done for (i, k) and (j, k). If all three
edges are deterministically rounded, the only possible violation of the ultrametric inequality
occurs when exactly one of the edges is rounded to the larger input distance. However, this
implies that one of a, b, c is strictly greater than 2

3 , while the other two are strictly less than
1
3 , violating the triangle inequality constraint in the LP for a, b, c.

Overcoming the Ω(log n) barrier. Our main technical contribution is an improved triple-based
analysis framework to overcome the previous Ω(log n) barrier. We start with a simple triple-based
analysis and explain its pitfalls.

A simple triple-based approach: we upper bound the number of modified edges by the total
number of times the distances on the edges are modified by the algorithm. The triple-based
approach bounds the cost – modifications incurred for an edge (j, k) when i is chosen as a pivot
– by charging the triangle (i, j, k), and the LP contributions of all three edges of a triangle
are used to pay for the expected cost charged to the triangle.
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This approach fails for some “bad” triangles, resulting in the LP contributions of some edges being
charged Ω(log n) times. Consider a triangle (i, j, k). Suppose in a recursive call where i is selected
as the pivot, the two pivot edges (i, j) and (i, k) are both deterministic and are going to be fixed to
the same distance. If the current distance of (j, k) is strictly greater than the distance (i, j) will be
fixed to, then the third edge (j, k) will be modified by the algorithm in the recursive call6. If the
LP contributions of (i, j) and (i, k) are very small (e.g., when the input distance of (i, j) and (j, k)
equals the distance they are fixed in this recursive call), we are forced to charge an Ω(1) multiple
of the LP contribution of (j, k) to pay for the modification of (j, k) in this triangle. At the same
time, the pair j, k will be grouped together and get involved in a subsequent recursive call7. Again,
in subsequent recursive calls, the edge (j, k) can be similarly charged by these bad triangles. As
analyzed in [CFLM22], it can cause edge (j, k) to be charged by Ω(log n) such bad triangles in
expectation, resulting in an Ω(log n) bound on the approximation ratio for the simple triple-based
approach.

To address this issue, we make one key observation about these triangles:

all bad triangles have at least one edge with a high LP contribution.

For example, in the above example, the LP contribution of (j, k) must be Ω(1). This suggests a
different way to upper bound the number of modified edges to handle bad triangles: we simply
upper bound the cost for edges with high LP contribution by 1.

Thus, we focus on upper bounding the total number of modifications on edges with low LP
contributions in the triple-based analysis; the simple triple-based analysis is sufficient for these
edges. By appropriately choosing the threshold for low- vs. high-cost, we can prove that edges with
low LP contributions are always deterministic in the algorithm, simplifying the proof. In Section 4
and 5, we refine the analysis further to obtain an approximation ratio of 5. The bad triangles belong
to the “(d, d, r)-same-triangles” described there.

Comparison between our rounding scheme vs purely randomized rounding. We believe
that our improved triple-based analysis framework can also be used to establish a constant approx-
imation ratio for the purely randomized rounding scheme. It appears that this would not give a
bound better than 5, and the analysis would be more tedious and less straightforward. In addition,
our improved analysis framework can be directly applied to analyze our algorithm on the weighted
variant of Ultrametric Violation Distance where the weights satisfy the triangle inequality
constraints; we obtain an O(min{L, log n}) approximation. However, the purely randomized round-
ing scheme cannot be analyzed similarly to obtain this bound because its analysis for the unweighted
cases heavily rely on the fact that all edges contribute equally to the objective. Example A.1 sug-
gests that, even when L = 2 (the Correlation Clustering instances), the purely randomized
rounding scheme may not yield a comparable approximation in the (improved) triple-based analysis
framework.

One step further: an improved algorithm for k-partite cases. Our improved triple-based
analysis framework still runs into the Ω(log n) issue (when L = Ω(log n)) for the k-partite case (a
special case of the weighted case with triangle inequality) and new ideas are needed. For example,
consider a triangle (i, j, u), where (i, j) and (j, u) are specified, but (i, u) is not specified. The LP
contribution of (i, u) is therefore 0. In the previous analysis on complete cases, if (j, u) is a random
edge, we need to use the LP contributions of both (i, j) and (i, u) to pay for the cost on (i, j)

6even if we use the purely randomized rounding scheme, this could still happen with probability 1− o(1)
7this also possibly happens with probability 1− o(1) if we use the purely randomized rounding scheme.
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when (i, j, u) is a bad triangle and u is chosen as the pivot. However, in the k-partite case, we can
no longer rely on the LP contribution of (i, u) to pay for this type of cost. To resolve this issue,
we use a (slightly) different rounding approach that treats specified edges and unspecified edges
differently. First, we use a larger threshold for unspecified edges. For example, we may define a
specified edge as deterministic if its distance distribution (given by the LP) puts a probability mass
greater than 5/8 on some distance value, while we define an unspecified edge as deterministic only
if the probability is greater than 3/4. Then, we employ rejection sampling on the specified random
edges: with the same parameters mentioned above, if the sampled distance is in the largest quantile
of the distribution, we reject the outcome and repeat the process until we accept. Using the fact
that the LP variables at each level satisfy the triangle inequality constraint, the expected number
of modifications on (i, j) in this triangle can be upper bounded by O(1) times its LP contribution.
For a formal definition of this algorithm, see Section 3, and for a detailed analysis, see Section 7
and Appendix B.7.

We note that the purely randomized rounding scheme does not give a constant approximation
ratio for k-partite instances via triple-based analysis, even in the special case of Correlation
Clustering on complete k-partite graphs. Example A.1 shows the failure of fully randomized
rounding for the k-partite case. This further highlights the advantage of our new rounding scheme.

1.3 Further Related Work

Fitting ultrametrics with other objectives. The problem of fitting ultrametrics for ℓ∞ and
ℓ1 norms is well studied in the literature. Farach et al. [FKW93] give a polynomial-time exact
algorithm for the ℓ∞ objective. However, for the ℓp objective (1 ≤ p <∞), its APX-hardness can be
derived from the APX-hardness of Correlation Clustering [CGW05]. There is a line of works
studying its approximation algorithms [HKM05, AC11, CDK+21]. The state-of-the-art algorithms
are an O(1)-approximation algorithm for the ℓ1 norm and O((log n log logn)1/p)-approximations for
ℓp norms (1 < p <∞). Many other objectives and assumptions are also considered in the literature
of fitting ultrametrics, including the maximization version [DPS+13, CFLM22], the outlier deletion
version [SWW17], multiplicative distortion version [DPS15] and assuming the input is in a high-
dimensional Euclidean space [CKL20, CDL21].

Fitting metrics and tree metrics. Brickell et al. [BDST08] formulated the problem of fitting
metrics to a given data with ℓp objective for 1 ≤ p ≤ ∞, which can be solved exactly in polynomial-
time via linear or convex programs. The ℓ0 version was recently introduced and studied [GJ17,
FRVB18, FGR+20, CFLM22], culminating in an O(log n)-approximation algorithm that runs in
O(n3) time.

On the other hand, Cavalli-Sforza and Edwards [CE67] introduced the tree fitting problem.
If there is a tree metric that exactly fits the data, the structure can be found in polynomial
time [WSSB77]. However, if there is no such tree metric, the problem for any ℓp objective (0 ≤
p ≤ ∞) is APX-hard [ABF+98, CGW05, Kip23]. Recent work of Kipouridis [Kip23] shows that
any ρ-approximation of Ultrametric Violation Distance can be converted to a 6ρ-approximation
for tree metric fiiting with ℓ0 objective. Combined with our result, there is automatically a 30-
approximation. Furthermore, Agarwala et al. [ABF+98] and Cohen-Addad et al. [CDK+21] give re-
ductions from tree metrics to ultrametrics with ℓp objectives (1 ≤ p ≤ ∞), only losing a constant fac-
tor. The state-of-the-art algorithms are then a 3-approximation for ℓ∞ norm, an O(1)-approximation
algorithm for ℓ1 norm, and O((log n log log n)1/p)-approximations for ℓp norms (1 < p <∞).
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Correlation clustering. As mentioned before, Correlation Clustering has been extensively
studied. Bansal, Blum and Chawla [BBC04] introduced the problem and gave a constant factor ap-
proximation. Later, it was improved by [CGW05, ACN08, CMSY15, CLN22, CLLN23]. The current
best algorithm is a 1.73-approximation based on the Sherali-Adams hierarchy. Furthermore, Corre-
lation Clustering has been proven to be APX-hard [CGW05]. Various variants of Correlation
Clustering have also been studied. Among those, works regarding weighted cases include the gen-
eral version [DEFI06, CGW05], the version with probability constraints [GMT07, ACN08, CMSY15]
and the version for asymmetric error costs [JKMM20].

1.4 Organization

In Section 2, we present the problem formulations and discuss how the linear program captures
the objective of (weighted) Ultrametric Violation Distance. In Section 3, we formally de-
scribe a unified algorithm for all three cases that we study. In Section 4, we present our analytical
framework. Specifically, in Section 4.2, we present our improved triple-based analysis for Ultra-
metric Violation Distance and establish two key lemmas that are used for the three cases. In
Sections 5, 6 and 7, we respectively prove the approximation ratios for the three cases.

2 Preliminaries

We use [n] to denote the set {1, 2, · · · , n}. We use R≥0 and R>0 to denote non-negative and positive
real numbers. For any set S ⊆ [n], we use

(
S
2

)
to denote the set of pairs of distinct elements in S,

i.e.,
(
S
2

)
= {(i, j) : i, j ∈ S, i < j}. We use x+ to denote the positive part max(x, 0). We use a

tuple t = (i, j, k) to denote a triangle consisting of three distinct vertices i, j, k and all three edges
between them.

2.1 The Ultrametric Violation Distance Problem

The Ultrametric Violation Distance problem takes as input two disjoint sets of edges E,E∅
such that E ∪E∅ =

(
[n]
2

)
and distances xin ∈ RE

>0 that are specified on the edges in E. The goal is

to find some ultrametric x ∈ R(
[n]
2 )

>0 such that its disagreement with the input
∑

(i,j)∈E 1(x(i, j) ̸=
xin(i, j)) is minimized. We use L to denote the number of distinct distances in xin and use d1 >
d2 > · · · > dL to denote the distinct distances in the input. For each edge (i, j) ∈ E, we use ℓ̃(i, j)
to denote the input distance level of xin(i, j), which satisfies xin(i, j) = dℓ̃(i,j).

The weighted version of Ultrametric Violation Distance takes input additional weights

w ∈ R(
[n]
2 )

≥0 . In addition, in the weighted version, because of the existence of zero weights, we can
w.l.o.g. assume the inputs are specified on all the edges, i.e., E =

(
[n]
2

)
. The goal is to minimize∑

(i,j)∈E w(i, j) · 1(x(i, j) ̸= xin(i, j)). In the weighted version with triangle inequality constraints,
we assume ∀i, j, k ∈ [n], w(i, j) + w(j, k) ≥ w(i, j).

Moreover, the unweighted Ultrametric Violation Distance on complete k-partite graphs
can be viewed as a special case of the weighted version with triangle inequality constraints: we can
set w(i, j) = 1 for (i, j) ∈ E and set w(i, j) = 0 for (i, j) ∈ E∅ in the weighted version, and the
complete k-partite graph implies that w satisfies the triangle inequality constraint.
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2.2 LP Definitions for Ultrametric Violation Distance

We can formulate a lower bound for (weighted) Ultrametric Violation Distance by an integer
linear program. For every edge (i, j) ∈

(
[n]
2

)
and every level ℓ ∈ [L], the integer program has a

variable yℓ(i, j) ∈ {0, 1} characterizing whether the distance of (i, j) is ≥ dℓ: yℓ(i, j) = 1 if the
output x satisfies x(i, j) ≥ dℓ; yℓ(i, j) = 0 if the output x satisfies x(i, j) < dℓ. We shall use
yℓ(i, j) and yℓ(j, i) to denote the same variable for each ℓ ∈ [L], (i, j) ∈

(
[n]
2

)
. For convenience, we

define yℓ(i, j)
def
= 0 for ℓ = 0 or i = j, and use ∆yℓ(i, j)

def
= yℓ(i, j) − yℓ−1(i, j). To guarantee that

we can recover some x ∈ R(
[n]
2 )

>0 from the variables, we can use constraints requiring that yℓ(i, j) is
increasing with respect to ℓ for every (i, j) (constraint (2)). To further guarantee that the recovered
x forms an ultrametric, we can use triangle inequality constraints on every level (constraint (1))
to ensure that the output forms a correlation clustering solution on every level. The objective of
(weighted) Ultrametric Violation Distance is to minimize the sum of weights of disagreement
between the input and the output ultrametric. Note that for each (i, j) ∈

(
[n]
2

)
and ℓ ∈ [L],

x(i, j) = dℓ if and only if yℓ(i, j) = 1 and yℓ−1(i, j) = 0. Recall that we define ℓ̃(i, j) as the distance
level of xin(i, j). Therefore, we can write the objective as

∑
(i,j)∈E w(i, j) · (1−∆yℓ̃(i,j)(i, j)).

By relaxing the integer program, we can obtain the LP relaxation (UMVD LP), which is equiv-
alent to the standard LP definition introduced by [CFLM22] for the weighted Ultrametric Vio-
lation Distance. To ensure convenient access, we are restating the LP as follows:

minimize
∑

i ̸=j∈[n]

w(i, j) · (1− yℓ̃(i,j)(i, j) + yℓ̃(i,j)−1(i, j))

subject to yℓ(i, j) ≤ yℓ(i, k) + yℓ(k, j) ∀ℓ ∈ [L], i, j, k ∈ [n]

yℓ−1(i, j) ≤ yℓ(i, j) ∀ℓ ∈ [L], i, j ∈ [n]

yℓ(i, j) ∈ [0, 1] ∀ℓ ∈ [L], i, j ∈ [n]

It can be observed that any optimal solution of (UMVD LP) can be easily modified to an optimal
solution satisfying yL(i, j) = 1 for any (i, j) ∈ E because these variables have non-positive coeffi-
cients in the objective of (UMVD LP). Hence, we can w.l.o.g. assume yL(i, j) = 1 for any (i, j) ∈ E
in the rest of the paper.

3 Pivot-based Algorithm

In this section, we present our pivot-based LP rounding algorithm for (weighted) Ultrametric Vi-
olation Distance (Algorithm 1). The algorithmic framework follows the pivot-based algorithms
of [AC11, CFLM22] and utilizes the optimal LP solutions of (UMVD LP). More specifically, the al-
gorithm is recursive, parameterized by two constants α ∈ [0, 0.5] and β ∈ [0, 1], and has access to all
distinct distances d1 > d2 > · · · > dL of the input and an optimal solution y∗ satisfying y∗L(i, j) = 1

for each (i, j) ∈
(
[n]
2

)
. Each recursive call takes as input a subset of vertices V ⊆ [n], the distances x

between vertices in V , and an upper bound level u ∈ [L] representing that the output distances of
the call should be upper bounded by du. To run the algorithm, we call LP-UMVD-Pivot([n], xin, 1)
and use the distances it returns as the output ultrametric.

In each recursive call, we randomly select a pivot vertex i ∈ V and compute a truncated
LP solution y in which all yℓ(i, j)s are set to 0 for any ℓ < u. According to the constraints
of (UMVD LP), the truncated LP solution satisfies the following lemma, which enables us to view
∆yℓ(i, j)s as a probability distribution of the distance of each edge (i, j).
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Algorithm 1: LP-UMVD-Pivot(V, x, u)

Input : V ⊆ [n], u ∈ [L], x ∈ R(
V
2)

≥0

Output : x′ ∈ R(
V
2)

≥0

Parameter: α ∈ [12 , 1]
1 if |V | ≤ 2 or u = L then
2 return x

3 i← a vertex in V uniformly at random
4 y ← y∗

5 for i, j ∈
(
V
2

)
do

6 for ℓ ∈ [u− 1] do
7 yℓ(i, j)← 0

8 for j ∈ V \ {i} do
9 ℓ∗ ← argmaxℓ∈[L] ∆yℓ(i, j) // break ties arbitrarily

10 if (i, j) ∈ E then
11 if ∆yℓ∗(i, j) > 1− α then
12 x′(i, j)← dℓ∗ // deterministic edges in E

13 else
14 x′(i, j)← sampled according to Eqn. (4) // random edges in E

15 else
16 if ∆yℓ∗(i, j) > 1− αβ then
17 x′(i, j)← dℓ∗ // deterministic edges in E∅

18 else
19 x′(i, j)← sampled according to Eqn. (5) // random edges in E∅

20 for (j, k) ∈
(
V \{i}

2

)
do

21 if x′(i, j) = x′(i, k) then
22 x′(j, k)← min{x(j, k), x′(i, j)}
23 else
24 x′(j, k)← max{x′(i, j), x′(i, k)}

25 for ℓ ∈ {u, u+ 1, · · · , L} do
26 Vℓ ← {j ∈ V : x′(i, j) = dℓ}
27 x′

∣∣
(Vℓ2 )
← LP-UMVD-Pivot

(
Vℓ, x

′∣∣
(Vℓ2 )

, ℓ
)

// x′∣∣
(Vℓ

2 )
is x′ restricted to

(
Vℓ
2

)
28 return x′

Lemma 3.1. In each recursive call, the truncated LP solution y is a feasible solution of (UMVD LP)
for the vertices in V and satisfies yL(i, j) = 1 for any (i, j) ∈

(
V
2

)
. In particular,

∑
ℓ∈[L]∆yℓ(i, j) =

1.

We call edges having the pivot i as an endpoint pivot edges and call the rest of the edges non-
pivot edges. Then, we determine the distances on the pivot edges as follows. For each non-pivot
vertex j ∈ V \ {i}, we pick a dominant level ℓ∗(y, i, j) ∈ argmaxℓ∈[L] ∆yℓ(i, j). If the dominant
level is not unique, we break ties arbitrarily. With the dominant level, we divide the edges into the
following four classes and set the distances for the pivot edges as follows. Also, see Figure 1 for an
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i
random
pivot

j

...

k

...

{yℓ(i, j)}ℓ∈[L], with ℓ∗ = 2

{yℓ(i, k)}ℓ∈[L], with ℓ∗ = 3

∆y for dominant levels

∆y3(i, k) = 0.45

∆y2(i, j) = 0.75

rounding

fixed to d2

sample according
to ∆yℓ(i, k)

Figure 1: Example of our rounding process on complete graphs, where we choose α = 0.4 and β = 0.

intuitive example of how the rounding process works on complete graphs under β = 0.

Random edges in E. (i, j) ∈ E falls into this class if ∆yℓ∗(y,i,j)(i, j) ≤ 1− α. When it is a pivot
edge, its distance x′(i, j) is random and follows the distribution (technically, the CCDF):

∀ ℓ ∈ [L], Pr[x′(i, j) ≥ dℓ] =
1

1− αβ
· (yℓ(i, j)− αβ)+ . (4)

Deterministic edges in E. (i, j) ∈ E falls into this class ∆yℓ∗(y,i,j)(i, j) > 1 − α. When it is a
pivot edge, its distance x′(i, j) is fixed to its dominant distance level dℓ∗(y,i,j).

Random edges in E∅. (i, j) ∈ E∅ falls into this class if ∆yℓ∗(y,i,j)(i, j) ≤ 1 − αβ. When it is a
pivot edge, its distance x′(i, j) is random and follows the distribution (i.e., the CCDF):

∀ ℓ ∈ [L], Pr[x′(i, j) ≥ dℓ] = yℓ(i, j) . (5)

Deterministic edges in E∅. (i, j) ∈ E∅ falls into this class if ∆yℓ∗(y,i,j)(i, j) > 1− αβ. When it
is a pivot edge, its distance x′(i, j) is fixed to its dominant distance level dℓ∗(y,i,j).

Remark 3.2. When β = 0, Eqn. (4) becomes ∀ ℓ ∈ [L], Pr[x′(i, j) ≥ dℓ] = yℓ(i, j), which is an
analog of the purely randomized scheme introduced by [ACN08].

After determining the pivot edges, we partition the non-pivot vertices according to the distances
between them and the pivot. Suppose Vℓ denotes the set of non-pivot vertices j ∈ V such that
x′(i, j) = dℓ. For any non-pivot edge (j, k) whose endpoints j, k are partitioned into the same set
Vℓ, we minimally fix its distance by setting the distance to min(x(j, k), dℓ). For any non-pivot edge
(j, k) whose endpoints j, k are partitioned into different sets, say j ∈ Vℓ, k ∈ Vℓ′ , we minimally fix
its distance by setting the distance to max(dℓ, dℓ′). Note that after this step, we can guarantee that
the ultrametric inequality is satisfied for every triangle that involves i. Finally, in the recursive call,
for each set Vℓ, we call our algorithm on Vℓ with an upper bound of dℓ on the output distance and
modify the distances between vertices in Vℓ to the output of the call.

Compared to the pivot-based algorithms of [AC11, CFLM22], our algorithm differs only in how
the distances on the edges incident to the pivot are determined. Similar to their analysis, we can
show that the algorithm outputs an ultrametric. For the sake of completeness, we present the proof
in Appendix B.1.

Lemma 3.3. Algorithm 1 outputs an ultrametric in polynomial time.
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4 Analytical Framework

In this section, we present the analytical framework for Algorithm 1 that will be used to obtain all
the approximation ratios.

4.1 Definitions and Basic Properties

Notice that the recursive calls in the algorithm form a tree structure. We use the root call to refer to
the recursive call LP-UMVD-Pivot([n], xin, 1) at the beginning of the algorithm. For any recursive
call, we use child calls to refer to the recursive calls on line 27 and use parent call for vice versa. If
a recursive call does not have child calls, we say it is a leaf call.

With an abuse of notation, for any LP solution y, we use yℓ∗(u,v)(i, j) to denote yℓ∗(y,u,v)(i, j).

Let c∗(i, j) denote the LP cost of edge (i, j) in y∗, i.e., c∗(i, j)
def
= 1 − ∆y∗

ℓ̃(i,j)
(i, j). With this

definition, we can rewrite the LP objective (UMVD LP) and thus lower bound the total number of
distances modified in the optimal solution OPT as follows:

OPT ≥
∑

(i,j)∈E

w(i, j) · c∗(i, j) . (6)

Based on the LP costs, we shall classify the edges in E into the following two classes:

low-cost edges include all edges (i, j) ∈ E satisfying c∗(i, j) < α, and

high-cost edges include all edges (i, j) ∈ E satisfying c∗(i, j) ≥ α.

We shall use EL and EH to denote the set of low-cost and high-cost edges. In the optimal solution
of the LP, low-cost edges satisfy

∆y∗ℓ∗(i,j)(i, j) ≥ ∆y∗
ℓ̃(i,j)

(i, j) = 1− c∗(i, j) > 1− α ,

and thus are deterministic in the root call. However, this may not be the case for high-cost edges.
We shall subdivide the high-cost edges into the following two classes based on whether they are
deterministic in the root call:

initially deterministic edges include all edges (i, j) ∈ EH such that ∆y∗ℓ∗(i,j)(i, j) > 1− α,

initially random edges include all edges (i, j) ∈ EH such that ∆y∗ℓ∗(i,j)(i, j) ≤ 1− α.

We shall use EHD and EHR to denote the set of high-cost edges that are initially deterministic
and that are initially random. For the high-cost edges that are initially deterministic, we have the
following tighter lower bound for their LP costs. We defer the proof to Appendix B.2.

Lemma 4.1. For any edge (i, j) ∈ EHD, c∗(i, j) > 1− α.

Next, we present two basic properties of Algorithm 1. The first property claims that the incre-
ments of y on the dominant levels ∆yℓ∗(i,j) are increasing from the root call to the leaf calls. We
defer the proof to Appendix B.3.

Lemma 4.2. Suppose y is the truncated LP solution in a recursive call with vertex set V . Suppose
y′ is the truncated LP solution in one of its child calls with vertex set V ′ ⊆ V . For each edge
(i, j) ∈

(
V ′

2

)
, ∆yℓ∗(i,j)(i, j) ≤ ∆y′ℓ∗(i,j)(i, j). In particular, for any recursive call with vertex set V

and truncated LP solution y, ∀(i, j) ∈
(
V
2

)
,∆yℓ∗(i,j)(i, j) ≥ ∆y∗ℓ∗(i,j)(i, j).
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From the above lemma and the fact that any edge (i, j) ∈ EL ∪EHD satisfies ∆y∗ℓ∗(i,j)(i, j) > 1−α,
we obtain the following corollary.

Corollary 4.3. In any recursive call, any low-cost (or initially deterministic high-cost) edge is
deterministic.

Because we choose α ≤ 1
2 , we can give the second property that low-cost edges are modified

only when they are non-pivot edges. We defer the proof to Appendix B.4.

Lemma 4.4. In any recursive call with vertex set V and truncated LP solution y, for any edge
(i, j) ∈ EL ∩

(
V
2

)
, the input distance satisfies x(i, j) = dℓ∗(y,i,j). In particular, when an edge (i, j) ∈

EL appears as a pivot edge, its distance x(i, j) is not modified in the recursive call.

4.2 Towards the Approximation Ratios: Improved Triple-based Analysis for
Ultrametric Violation Distance

In this subsection, we develop two key lemmas, 4.5 and 4.6, to prove the approximation ratios for
the three cases and any constant α ∈ (0, 12 ]. By contrast to the triple-based analysis of the previous
works (e.g., [ACN08, CMSY15]), we separately upper bound the cost of the algorithm on different
classes of edges: for the high-cost edges, we upper bound the algorithm’s cost by 1 and further by a
constant multiple of its LP cost; for low-cost edges, we shall utilize the previous triple-based analysis.
In the triple-based analysis, Lemma 4.5 establishes the approximation ratio given a scheme charging
the non-pivot edges so that: (1) in each triangle t = (i, j, k) the expected number of modifications
on low-cost edges in t can be upper bounded by the expected total charges in t; and (2) the expected
total charges on each edge can be upper bounded. In addition, Lemma 4.6 establishes an upper
bound for the expected total charges on each edge by the probability that the edge can no longer
be charged in the recursive algorithm (conditioned on any possible charging value).

Let ALG be the total number of distances modified by the algorithm. Because of the definition
of high-cost edges and Lemma 4.1, we can upper bound its expectation as follows:

E[ALG] =
∑

(i,j)∈E

w(i, j) · Pr[(i, j) is modified]

≤
∑

(i,j)∈EL

w(i, j) · Pr[(i, j) is modified] +
∑

(i,j)∈EHD

w(i, j) +
∑

(i,j)∈EHR

w(i, j)

≤
∑

(i,j)∈EL

w(i, j) · E[#times (i, j) is modified] +
1

1− α
·

∑
(i,j)∈EHD

w(i, j) · c∗(i, j)

+
1

α
·

∑
(i,j)∈EHR

w(i, j) · c∗(i, j) .
(7)

Recall the lower bound for the optimal solution (6). To prove the approximation ratio, we only need
to upper bound the number of modifications the algorithm makes on those low-cost edges by the LP
value of y∗. Because of Lemma 4.4, low-cost edges are only modified when they appear as non-pivot
edges in the recursive calls. Hence, we only need to consider the modifications on non-pivot edges.

For each triangle t = (i, j, k), let At denote the event that i, j, k appear in the same recursive
call where one of them is chosen as a pivot. For each triangle t and each edge (i, j) ∈ t, we define
Mi,j,t = 1 if At happens, (i, j) ∈ EL, and (i, j) is modified in the event At. Otherwise, we define
Mi,j,t = 0. With this definition, we can rewrite the total number of modifications on low-cost edges
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as ∑
(i,j)∈EL

w(i, j) · (#times (i, j) is modified) =
∑

(i,j)∈EL

w(i, j) ·
∑
t:i,j∈t

Mi,j,t . (8)

The charging scheme. To upper bound the sum of Mi,j,t by the LP value of the optimal solution
y∗, we introduce intermediate random variables Bi,j,t, which specify how much we charge the non-
pivot edge in At. More specifically, for any triangle t ∈

(
[n]
3

)
and any edge (i, j) ∈ t ∩ E, we will

charge (i, j) in triangle t if both of the following conditions are satisfied:

• the event At happens (i.e., three vertices of t appear in the same recursive call where one of
them is chosen as a pivot), and

• the edge (i, j) is the non-pivot edge in the event At.

When both conditions are satisfied, we assign a non-negative value to Bi,j,t and use Bi,j,t · w(i, j) ·
c∗(i, j) to denote how much (i, j) is charged in triangle t. Note that since the event At can only
happen in at most one recursive call, Bi,j,t cannot be assigned twice and is thus well defined.
Otherwise, we assign 0 to Bi,j,t for convenience. In the analysis, we want two properties for this
charging scheme:

1. we can upper bound the expectation of expression (8) by the expected sum of Bi,j,t · w(i, j) ·
c∗(i, j), and

2. fixing an edge (i, j), we can upper bound the expectation of the sum of Bi,j,t over all t ∋ i, j.

Next, we present the key Lemma 4.5 in this section: given a charging scheme (of Bi,j,ts) satisfying the
above two properties, we can establish an upper bound on the approximation ratio of Algorithm 1.

Lemma 4.5. Suppose there exists a charging scheme such that

1. for any triangle t ∈
(
[n]
3

)
,∑

(i,j)∈t

w(i, j) · E[Mi,j,t|At] ≤
∑

(i,j)∈t∩E

E[Bi,j,t|At] · w(i, j) · c∗(i, j) ; (9)

2. for any edge (i, j) ∈ E, the total charges on (i, j) satisfies

∑
t:i,j∈t

E[Bi,j,t] ≤


BL if (i, j) ∈ EL,
BHD if (i, j) ∈ EHD,
BHR if (i, j) ∈ EHR.

(10)

Then, Algorithm 1 is a max{BL, BHD + 1
1−α , BHR + 1

α}-approximation.

Proof. According to the definition, when At does not happen, Mi,j,t = Bi,j,t = 0 for any (i, j) ∈ t.
Therefore, E[Mi,j,t] = E[Mi,j,t|At] ·Pr[At] and E[Bi,j,t] = E[Bi,j,t|At] ·Pr[At]. By multiplying Pr[At]

on both sides of Eqn. (9) and summing over all possible t ∈
(
[n]
3

)
, we have

∑
(i,j)∈EL

w(i, j) ·
∑
t:i,j∈t

E[Mi,j,t] ≤
∑

(i,j)∈E

( ∑
t:i,j∈t

E[Bi,j,t]

)
· w(i, j) · c∗(i, j) .
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According to Eqn. (6), (7), (8), and (10),

E[ALG] ≤ BL

∑
(i,j)∈EL

w(i, j) · c∗(i, j) +BHD

∑
(i,j)∈EHD

w(i, j) · c∗(i, j) +BHR

∑
(i,j)∈EHR

w(i, j) · c∗(i, j)

+
1

1− α

∑
(i,j)∈EHD

w(i, j) · c∗(i, j) + 1

α

∑
(i,j)∈EHR

w(i, j) · c∗(i, j)

≤ max
{
BL, BHD +

1

1− α
, BHR +

1

α

} ∑
(i,j)∈E

w(i, j) · c∗(i, j)

≤ max
{
BL, BHD +

1

1− α
, BHR +

1

α

}
·OPT

Therefore, Algorithm 1 is a max{BL, BHD + 1
1−α , BHR + 1

α}-approximation.

Bounding the total charges. Next, we present a method to upper bound the total charge∑
t:(i,j)∈t E[Bi,j,t] on each edge by lower bounding the probability that an edge can no longer be

charged after each time it is charged. Similar analysis can be found in previous works [ACN08,
CMSY15] on Correlation Clustering. In Algorithm 1, when the endpoints of an edge are
partitioned into different sets on line 26 in a recursive call, the edge will no longer be charged in its
child calls. Then, the key lemma for the upper bound can be formulated as follows.

Lemma 4.6. Fix an edge (i, j) ∈ E and any q > 0. Let R be a recursive call, b > 0 be a positive
number, and t be a triangle containing i, j such that At happens in R and (i, j) is a non-pivot edge
charged by Bi,j,t = b. If for any valid choice of R, b, t the probability that i and j are partitioned
into different sets on line 26 of Algorithm 1 is at least q · b, then the expected total charges on edge
(i, j) satisfy ∑

t:(i,j)∈t

E[Bi,j,t] ≤ q−1 .

Proof. We consider a stronger argument on the calls: for any call LP-UMVD-Pivot(V, x, u) such
that i, j ∈ V ,

∑
t∈(V3):(i,j)∈t

E[Bi,j,t] ≤ q−1. We shall prove it by induction in a bottom-up way.
The base case is when |V | = 2 or u = L. Because the algorithm returns the input distance at the
beginning of the call, according to the definition, Bi,j,t = 0 for any i, j ∈ t ∈

(
V
3

)
.

Consider any call LP-UMVD-Pivot(V, x, u) such that |V | ≥ 3 and u < L. Consider any (i, j) ∈(
V
2

)
. Suppose that the stronger argument holds for any LP-UMVD-Pivot(V ′, x′, u′) satisfying

|V ′| < |V |. If i or j is chosen as the pivot vertex in the call, Bi,j,t = 0 for any i, j ∈ t ∈
(
V
3

)
because

(i, j) is not a non-pivot edge and i, j do not simultaneously appear in any of its children calls. We
prove the stronger argument for this case. Otherwise, suppose that the pivot vertex is k ̸= i, j. Let
t = (i, j, k). In this case, the expected total charge of (i, j) equals the sum of its expected charge in
triangle t and its expected total charge in the child call involving both i, j (if exists):∑

t′∈(V3):i,j∈t′
E[Bi,j,t′ ] = E[Bi,j,t] +

∑
ℓ≥u

Pr[i, j ∈ Vℓ] · E
[∑

t′∈(Vℓ3 ):i,j∈t
′
Bi,j,t′

∣∣∣ i, j ∈ Vℓ

]

For any b > 0, conditioning on Bi,j,t = b, we have
∑

ℓ≥u Pr[i, j ∈ Vℓ] ≤ 1 − q · b according to
the assumption of the lemma. According to the induction hypothesis, (conditioning on Bi,j,t = b)
E
[∑

t′∈(Vℓ3 ):i,j∈t
′ Bi,j,t′

∣∣i, j ∈ Vℓ

]
≤ q−1 for any possible Vℓ ⊂ V . Therefore, the stronger argument
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holds in this case because∑
t′∈(V3):i,j∈t′

E[Bi,j,t′ ] ≤
∑
b≥0

Pr[Bi,j,t = b] ·
(
b+ (1− q · b) · q−1

)
=

∑
b≥0

Pr[Bi,j,t = b] · q−1 = q−1 .

5 5-Approximation Analysis for Complete Graphs

In this section, we prove that Algorithm 1 is a 5-approximation algorithm for unweighted Ultra-
metric Violation Distance on complete graphs by setting β = 0 and an appropriate choice of
α. More specifically, we will prove the following theorem:

Theorem 5.1. If α ∈
[
3−

√
5

2 , 0.5
]
, β = 0, Algorithm 1 is a randomized polynomial-time max{ 3

1−α ,
2
α}-

approximation algorithm for Ultrametric Violation Distance on complete graphs. In partic-
ular, with α = 0.4, it is a randomized polynomial-time 5-approximation for Ultrametric Viola-
tion Distance on complete graphs.

Recall that we have E =
(
[n]
2

)
, E∅ = ∅ and ∀(i, j) ∈ E,w(i, j) = 1 in this case. For convenience,

in the rest of this section, we assume β = 0. Upon this assumption, the CCDF function (4) for
random edges in E becomes:

∀ ℓ ∈ [L], Pr[x′(i, j) ≥ dℓ] = yℓ(i, j) . (11)

To prove Theorem 5.1, we shall use Lemma 4.5, 4.6 and the following Lemma 5.2, which presents
a charging scheme that meets the two conditions we need for the approximation ratio.

Lemma 5.2. If α ∈
[
3−

√
5

2 , 0.5
]
, there exists a charging scheme on complete graphs such that

1. for any triangle t ∈
(
[n]
3

)
,∑
(i,j)∈t

E[Mi,j,t|At] ≤
∑

(i,j)∈t

E[Bi,j,t|At] · c∗(i, j) .

2. for any b > 0, (i, j) ∈ E and any t ∋ i, j, in any recursive call, conditioning on At and that
(i, j) is a non-pivot edge charged by Bi,j,t = b, the probability that i and j are partitioned into
different sets on line 26 of Algorithm 1 is at least qi,j · b, where

qi,j =


min{1−α

3 , α2 } if (i, j) ∈ EL

1−α
2 if (i, j) ∈ EHD

α if (i, j) ∈ EHR

Assuming the correctness of the above lemma, we can obtain the proof of Theorem 5.1.
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Proof of Theorem 5.1. Because of Lemma 4.6 and the second bullet of Lemma 5.2, we can present
the second condition of Lemma 4.5 as follows:

∀(i, j) ∈ E,
∑
t:i,j∈t

E[Bi,j,t] ≤


max{ 3

1−α ,
2
α} if (i, j) ∈ EL ,

2
1−α if (i, j) ∈ EHD ,
1
α if (i, j) ∈ EHR .

Because the first bullet of Lemma 5.2 meets that of Lemma 4.5, if α ∈
[
3−

√
5

2 , 0.5
]
, Algorithm 1 is

a max{ 3
1−α ,

2
α}-approximation for Ultrametric Violation Distance.

In the rest of this section, we present the charging scheme and prove Lemma 5.2. The charging
scheme defines Bi,j,t differently for different classes of triangles. Recall that given the truncated
solution y, we say an edge is deterministic if ∆yℓ∗(i,j)(i, j) > 1 − α, and otherwise, we say it
is random. The triangles are classified according to the number of deterministic edges and the
dominant levels of the deterministic edges in the triangles:

(d, d, d)-triangles have three deterministic edges.

(d, d, r)-same-triangles have two deterministic edges and one random edge, and the dominant
levels of the deterministic edges are the same.

(d, d, r)-diff-triangles have two deterministic edges and one random edge, and the dominant levels
of the deterministic edges are different.

(d, r, r)-triangles have one deterministic edge and two random edges.

(r, r, r)-triangles have three random edges.

Next, we present three useful lemmas. In the discussion of different classes, we have the following
observation: the probability that a low-cost edge is modified is highly related to the values of
yℓ∗(i,j)−1(i, j) and 1 − ∆yℓ∗(i,j)(i, j) on each edge (i, j) ∈ t of the triangle. The first two lemmas
give upper bounds for these terms based on the LP contributions c∗(i, j) of the edges and will be
extensively used to prove the first bullet of Lemma 5.2. We note that the proofs of these two lemmas
are independent of E and w(i, j) and can work for all three cases.

Lemma 5.3. In any recursive call with vertex set V and truncated LP solution y, for any edge
(i, j) ∈

(
V
2

)
, 1−∆yℓ∗(i,j)(i, j) can be upper bounded by{

c∗(i, j) if (i, j) ∈ EL ∪ EHR ,
α

1−α · c
∗(i, j) if (i, j) ∈ EHD .

In particular, yℓ∗(i,j)−1(i, j) and 1− yℓ∗(i,j)(i, j) satisfy the same upper bound.

Proof. For any (i, j) ∈
(
[n]
2

)
, because of Lemma 4.2, we have

1−∆yℓ∗(i,j)(i, j) ≤ 1−∆y∗ℓ∗(i,j)(i, j) = c∗(i, j) .

In particular, for any (i, j) ∈ EHD, we have

1−∆yℓ∗(i,j)(i, j) ≤ 1−∆y∗ℓ∗(i,j)(i, j) (Lemma 4.2)

< α ((i, j) is initially deterministic)

<
α

1− α
· c∗(i, j) . (Lemma 4.1)

In particular, the second lemma gives an improved bound for a certain type of edge under some
conditions, which helps us to refine the analysis.
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Lemma 5.4. When an edge (i, j) ∈ EHR appears as deterministic in some recursive call with
truncated LP solution y, yℓ∗(i,j)−1(i, j) = 0.

Proof. Because (i, j) ∈ EHR, ∀ℓ ∈ [L],∆y∗ℓ (i, j) ≤ 1−α. Consider any call LP-UMVD-Pivot(V, x, u)
with truncated LP solution y. For any ℓ > u, ∆yℓ(i, j) = ∆y∗ℓ (i, j) ≤ 1 − α. Since (i, j) is
deterministic in the call and yℓ(i, j) = 0 for ℓ < u, the dominant level ℓ∗(y, i, j) can only be u.
Therefore, yℓ∗(i,j)−1(i, j) = 0.

In particular, because 1−∆yℓ∗(i,j)(i, j) = yℓ∗(i,j)−1(i, j)+ 1− yℓ∗(i,j)(i, j) and ∀ℓ ∈ [L], yℓ(i, j) ∈
[0, 1], yℓ∗(i,j)−1(i, j) and 1− yℓ∗(i,j)(i, j) satisfy the same upper bound.

The third lemma gives lower bounds for the probabilities that the endpoints of a non-pivot edge
are partitioned into different sets on line 26 of the algorithm, which will be used for the second
bullet of Lemma 5.2. The proof of this lemma follows on the fact that the distance on a random
edge can only equal a fixed value with probability at most 1 − α, i.e., ∆yℓ(i, j) ≤ 1 − α for any
random (i, j) and ℓ ∈ [L].

Lemma 5.5. Consider any recursive call LP-UMVD-Pivot(V, x, u) with |V | > 2. Suppose i is the
pivot vertex of the call. For any (j, k) ∈

(
V \{i}

2

)
, the probability that j, k are partitioned into different

sets on line 26 can be lower bounded by

• 1 if both (i, j) and (i, k) are deterministic in the call but they have different dominant levels,
or

• α if at least one of (i, j) and (i, k) is random.

Proof. For the first bullet, according to the algorithm, the distances of (i, j) and (i, k) are deter-
ministically different, and thus j, k are partitioned into different sets with probability 1.

For the second bullet, suppose that the truncated LP solution in the call is y. W.l.o.g., we
assume that (i, j) is random. Note that this implies ∀ℓ ∈ [L],∆yℓ(i, j) ≤ ∆yℓ∗(i,j)(i, j) ≤ 1 − α.
According to the CCDF (11), the probability that j and k are partitioned into different sets on
line 26 is

1−
∑
ℓ∈[L]

Pr[j, k ∈ Vℓ] = 1−
∑
ℓ∈[L]

Pr[x′(i, j) = dℓ] · Pr[x′(i, k) = dℓ]

= 1−
∑
ℓ∈[L]

∆yℓ(i, j) · Pr[x′(i, k) = dℓ]

≥ 1−
∑
ℓ∈[L]

(1− α) · Pr[x′(i, k) = dℓ]

= 1− (1− α) = α .

Next, we present the charging scheme and prove Lemma 5.2 for each class of triangles. Due to
Corollary 4.3, there is no low-cost edge in (r, r, r)-triangles. Therefore, we only need to discuss the
remaining four classes of triangles. Consider any triangle t = (i, j, k) and any recursive call with a
vertex set involving i, j, k and truncated LP solution y. For convenience, we will condition on At in
the rest of the analysis in this section, and all the expectations will be automatically conditioned
on At. Note that the two pivot edges in (d, r, r)-triangles and (d, d, r)-diff-triangles always satisfy
one of the conditions in Lemma 5.5. The endpoints of the non-pivot edges in these triangles will
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be partitioned into different sets with a constant probability (under the choice of α ∈ [3−
√
5

2 , 0.5]).
Hence, it should not be surprising to prove Lemma 5.2 for these triangles, and we shall defer their
proofs to Appendix B.5.

Recall our charging scheme. Conditioning on At, we charge an edge in t only when the edge is
non-pivot. If an edge (i′, j′) is not charged in t, we automatically assign 0 to Bi′,j′,t. For convenience,
we will only specify Bi′,j′,t when (i′, j′) is the non-pivot edge in the rest of the analysis.

(d, d, d)-triangles. Because all three edges in the triangle are deterministic, we have ∆yℓ∗(i,j)(i, j),
∆yℓ∗(i,k)(i, k), ∆yℓ∗(j,k)(j, k) > 1− α. Note that this implies that

∀i′ ̸= j′ ∈ t, yℓ∗(i′,j′)−1(i
′, j′) < α, yℓ∗(i′,j′)(i

′, j′) > 1− α . (12)

Note that the distance of any pivot edge (u, v) ∈ t is set to its dominant distance level
dℓ∗(y,u,v). Because of Lemma 4.4, the input distance of any low-cost edge (u, v) ∈ t is also dℓ∗(y,u,v).
Therefore, a low-cost edge is modified only when it is non-pivot in the call and the ultramet-
ric inequality is violated on the three dominant distance levels, i.e., there exists a permutation
(i′, j′, k′) of i, j, k such that ℓ∗(y, i′, j′) < min{ℓ∗(y, j′, k′), ℓ∗(y, k′, i′)} (equivalently, dℓ∗(y,i′,j′) >
max{dℓ∗(y,j′,k′), dℓ∗(y,k′,i′)}).

If there is no violation of the ultrametric inequality on these three deterministic levels, Mi,j,t =

Mi,k,t = Mj,k,t = 0. For this case, we define Bi,j,t, Bi,k,t, Bj,k,t
def
= 0, and Lemma 5.2 then clearly

holds.
Otherwise, w.l.o.g., we assume that ℓ∗(y, j, k) < min{ℓ∗(y, i, j), ℓ∗(y, i, k)}. In this case, for any

permutation (i′, j′, k′) of i, j, k,

Mi′,j′,t = 1(k′ is the pivot vertex) · 1((i′, j′) ∈ EL).

Because each vertex in t is chosen as the pivot with equal probability 1/3 conditioning on At, in
this case, ∑

(i′,j′)∈t

E[Mi′,j′,t] =
1

3
·
(
1((i, j) ∈ EL) + 1((i, k) ∈ EL) + 1((j, k) ∈ EL)

)
.

Because y is feasible in (UMVD LP) and because of Lemma 5.3,

c∗(i, j) + c∗(i, k) ≥ yℓ∗(i,j)−1(i, j) + yℓ∗(i,k)−1(i, k) (Lemma 5.3)

≥ yℓ∗(j,k)(i, j) + yℓ∗(j,k)(i, k) (LP constraint (2))

≥ yℓ∗(j,k)(j, k) > 1− α . (LP constraint (1) & Eqn. (12))

Remark 5.6. If α ≤ 1
3 , yℓ∗(i,j)−1(i, j) + yℓ∗(i,k)−1(i, k) ≤ 2α ≤ 1 − α and one can easily find a

contradiction. This implies no violation of the ultrametric inequality in this type of triangle if the
parameter α is less than 1

3 .

Because of Lemma 5.4, Eqn. (12) and α ≤ 1
2 , if (i, j) ∈ EHR or (i, k) ∈ EHR, yℓ∗(i,j)−1(i, j) +

yℓ∗(i,k)−1(i, k) < α ≤ 1−α, which violates the above inequality. Therefore, edges (i, j), (i, k) /∈ EHR.
Based on this fact, when the corresponding edge is non-pivot in the recursive call, we shall define
Bi,j,k, Bi,k,t, Bj,k,t as follows:

Bi,j,t
def
=

{
3

1−α if (i, j) ∈ EL

2
1−α if (i, j) ∈ EHD

, Bi,k,t
def
=

{
3

1−α if (i, k) ∈ EL

2
1−α if (i, k) ∈ EHD

, Bj,k,t
def
= 0 ,
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which implies the first bullet of Lemma 5.2 for this case:∑
(i′,j′)∈t

E[Bi′,j′,t] · c∗(i′, j′) =
2 + 1((i, j) ∈ EL)

3(1− α)
· c∗(i, j) + 2 + 1((i, k) ∈ EL)

3(1− α)
· c∗(i, k)

≥ 1((i, j) ∈ EL) + 1((i, k) ∈ EL) + 1((j, k) ∈ EL)

3(1− α)
·
(
c∗(i, j) + c∗(i, k)

)
>

1((i, j) ∈ EL) + 1((i, k) ∈ EL) + 1((j, k) ∈ EL)

3
=

∑
(i′,j′)∈t

E[Mi′,j′,t] ,

Further, when the edge (i, j) (or (i, k)) is non-pivot, two pivot edges in the triangle are both
deterministic but have different dominant levels. Because of Lemma 5.5, the probability i, j (or i, k)
are then partitioned into different sets on line 26 is at least 1, which is at least{

1−α
3 ·Bi,j,t if (i, j) ∈ EL

1−α
2 ·Bi,j,t if (i, j) ∈ EHD

and

{
1−α
3 ·Bi,k,t if (i, k) ∈ EL

1−α
2 ·Bi,k,t if (i, k) ∈ EHD

.

This definition satisfies the second bullet of Lemma 5.2 for this case.

(d, d, r)-same-triangles. W.l.o.g., we assume (i, j) and (i, k) are the deterministic edges. Because
of Lemma 4.4 and ℓ∗(y, i, j) = ℓ∗(y, i, k), the input distances of edges (i, j) and (i, k) are both
dℓ∗(y,i,j). Therefore, Mi,j,t (or Mi,k,t) equals 1 only when the pivot is k (resp., j), it is low-cost, and
the random distance x′(j, k) > dℓ∗(y,i,j), i.e.,

Mi,j,t = 1(k is the pivot vertex) · 1((i, j) ∈ EL) · 1(x′(j, k) > dℓ∗(y,i,j)) ,

Mi,k,t = 1(j is the pivot vertex) · 1((i, k) ∈ EL) · 1(x′(j, k) > dℓ∗(y,i,j)) .

According to the CCDF (11) of the random distance, the probability that x′(j, k) > dℓ∗(y,i,j) is

yℓ∗(i,j)−1(j, k) ≤ yℓ∗(i,j)−1(i, j) + yℓ∗(i,j)−1(i, k) (LP constraint (1))

= yℓ∗(i,j)−1(i, j) + yℓ∗(i,k)−1(i, k) . (13)

Because each vertex in t is chosen as the pivot with equal probability 1/3 conditioning on At, in
this class of triangles, ∑

(i′,j′)∈t

E[Mi′,j′,t] ≤
2(yℓ∗(i,j)−1(i, j) + yℓ∗(i,k)−1(i, k))

3
.

Accordingly, when the corresponding edge is non-pivot, we define Bi,j,t, Bi,k,t, Bj,k,t as follows:

Bi,j,t
def
=


2 if (i, j) ∈ EL

2α
1−α if (i, j) ∈ EHD

0 if (i, j) ∈ EHR

, Bi,k,t
def
=


2 if (i, k) ∈ EL

2α
1−α if (i, k) ∈ EHD

0 if (i, k) ∈ EHR

, Bj,k,t
def
= 0

Because of Lemma 5.3 and 5.4, this definition implies the first bullet of Lemma 5.2:∑
(i′,j′)∈t

E[Bi′,j′,t] · c∗(i′, j′) ≥
2

3
· yℓ∗(i,j)−1(i, j) +

2

3
· yℓ∗(i,k)−1(i, k) ≥

∑
(i′,j′)∈t

E[Mi′,j′,t] .
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Further, when the edge (i, j) (or (i, k)) is non-pivot, one of the pivot edges in the triangle is
random. Because of Lemma 5.5, the probability i, j (or i, k) are then partitioned into different sets
on line 26 is at least α, which is at least

α
2 ·Bi,j,t if (i, j) ∈ EL

1−α
2 ·Bi,j,t if (i, j) ∈ EHD

1 ·Bi,j,t if (i, j) ∈ EHR

and


α
2 ·Bi,k,t if (i, k) ∈ EL

1−α
2 ·Bi,k,t if (i, k) ∈ EHD

1 ·Bi,k,t if (i, k) ∈ EHR

.

This definition satisfies the second bullet of Lemma 5.2 for this class of triangles.

6 O(min{L, logn})-Approximation Analysis for Weighted Instances
with Triangle Inequality Constraints

In this section, we prove that Algorithm 1 is an O(min{L, log n})-approximation algorithm for
weighted Ultrametric Violation Distance with triangle inequality constraints by setting β = 0
and an appropriate choice of α. More specifically, we will prove the following theorem:

Theorem 6.1. If α = 1
3 , β = 0, Algorithm 1 is a randomized polynomial-time O(min{L, log n})-

approximation algorithm for weighted Ultrametric Violation Distance where weights satisfy
the triangle inequality.

In Section 2, we have w.l.o.g. assumed that E =
(
[n]
2

)
for weighted instances. Because of

Lemma 4.5, the proof of Theorem 6.1 directly follows the following lemma.

Lemma 6.2. If α = 1
3 , β = 0, there exists a charging scheme on weighted cases with triangle

inequality constraints such that

1. for any triangle t ∈
(
[n]
3

)
,∑

(i,j)∈t

w(i, j) · E[Mi,j,t|At] ≤
∑

(i,j)∈t

E[Bi,j,t|At] · w(i, j) · c∗(i, j) .

2. for any edge (i, j) ∈
(
[n]
2

)
,
∑

t:i,j∈t E[Bi,j,t] = O(min{L, log n}) .

In the rest of this section, we will prove Lemma 6.2. For convenience, we assume α = 1
3 and

β = 0. Because β = 0, we can still use the lemmas and inequalities established in Section 5,
including Lemma 5.3, 5.4, 5.5 and inequalities (12), (13).

We classify the charge Bi,j,t into two types. Let B(1)
i,j,t and B

(2)
i,j,t denote charges of the two types,

where B
(1)
i,j,t = Bi,j,t, B

(2)
i,j,t = 0 if the charge is classified to the first type and B

(1)
i,j,t = 0, B

(2)
i,j,t = Bi,j,t

if the charge is classified as the second type. With the classification, the total charge on (i, j) can
be rewritten as the sum of its first-type charges and its second-type charges, i.e.,

∑
t:i,j∈tB

(1)
i,j,t +∑

t:i,j∈tB
(2)
i,j,t. Therefore, we can upper bound for total charges of different types to upper bound

the total charges: ∑
t:i,j∈t

E[B(1)
i,j,t] = O(1) and

∑
t:i,j∈t

E[B(2)
i,j,t] = O(min{L, log n}) .

For the first type, we will use the same method in Section 5 by showing the condition in Lemma 4.6
with q = Ω(1). For the second type, we will use the technique of [CFLM22] to analyze the
O(log{L, log n}) approximation ratio of their pivot-based algorithm.
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Similarly, as in Section 5, we prove the lemma by presenting the charging scheme for each class
of triangles. Consider any triangle t = (i, j, k) and any recursive call with a vertex set involving all
of i, j, k. Suppose that the recursive call has an upper bound level u and a truncated LP solution
y. For convenience, we will condition on At in the rest of this section, and all expectations will be
automatically conditioned on At. Further, we similarly defer the proofs for (d, d, r)-diff-triangles
and (d, r, r)-triangles to Appendix B.6.

(d, d, d)-triangles. Note that the distance of any pivot edge (u, v) ∈ t is set to its dominant
distance level dℓ∗(y,u,v). Because of Lemma 4.4, any low-cost edge (u, v) has an input distance x(u, v)
equal to the dominant distance level dℓ∗(y,u,v). If the non-pivot edge is low-cost, it is modified only
when the ultrametric inequality is violated at the three dominant distance levels, i.e., there exists
a permutation (i′, j′, k′) of i, j, k such that ℓ∗(y, i′, j′) < min{ℓ∗(y, i′, k′), ℓ∗(y, j′, k′)}. However,
ℓ∗(y, i′, j′) < min{ℓ∗(y, i′, k′), ℓ∗(y, j′, k′)} implies

α > 1− yℓ∗(i′,j′)(i
′, j′) (Eqn. (12))

≥ 1− yℓ∗(i′,j′)(i
′, k′)− yℓ∗(i′,j′)(j

′, k′) (LP constraint (1))

≥ 1− yℓ∗(i′,k′)−1(i
′, k′)− yℓ∗(j′,k′)−1(j

′, k′) (LP constraint (2))

> 1− 2α , (Eqn. (12))

which violates our choice of parameter α = 1
3 . Therefore, the low-cost non-pivot edges cannot be

modified, and we have Mi,j,t = Mi,k,t = Mj,k,t = 0 in this case. Accordingly, by always defining
Bi,j,t, Bi,k,t, Bj,k,t

def
= 0 and classifying the charges into the first type, we show the first bullet of

Lemma 6.2 and the condition in Lemma 4.6 for this class of triangles.

(d, d, r)-same-triangles. W.l.o.g. we assume (i, j) and (i, k) are deterministic. Because of Corol-
lary 4.3, we have (j, k) ∈ EH, Mj,k,t = 0, and c∗(j, k) ≥ α. Recall that we have shown for this class
of triangles in Section 5:

Mi,j,t = 1(k is the pivot vertex) · 1((i, j) ∈ EL) · 1(x′(j, k) > dℓ∗(y,i,j)) ,

Mi,k,t = 1(j is the pivot vertex) · 1((i, k) ∈ EL) · 1(x′(j, k) > dℓ∗(y,i,j)) ,

and the probability that x′(j, k) > dℓ∗(y,i,j) is at most yℓ∗(i,j)−1(i, j) + yℓ∗(i,k)−1(i, k). Because of
Lemma 5.3, yℓ∗(i,j)−1(i, j) ≤ c∗(i, j), yℓ∗(i,k)−1(i, k) ≤ c∗(i, k). Because edges (i, j) and (i, k) are
deterministic and Eqn. (12), yℓ∗(i,j)−1(i, j), yℓ∗(i,k)−1(i, k) < α ≤ c∗(j, k). Therefore, in this class of
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triangles, we have∑
(i′,j′)∈t

w(i′, j′) · E[Mi′,j′,t] ≤
yℓ∗(i,j)−1(i, j) + yℓ∗(i,k)−1(i, k)

3
·
(
w(i, j) + w(i, k)

)
≤ w(i, j) · c∗(i, j) + w(i, k) · c∗(i, k)

3
+

yℓ∗(i,j)−1(i, j) · w(i, k)
3

+
yℓ∗(i,k)−1(i, k) · w(i, j)

3

≤ w(i, j) · c∗(i, j) + w(i, k) · c∗(i, k)
3

+
yℓ∗(i,j)−1(i, j) · (w(i, j) + w(j, k))

3

+
yℓ∗(i,k)−1(i, k) · (w(i, k) + w(j, k))

3
(triangle inequality for w)

≤ w(i, j) · c∗(i, j) + w(i, k) · c∗(i, k)
3

+
c∗(i, j) · w(i, j) + c∗(j, k) · w(j, k)

3

+
c∗(i, k) · w(i, k) + c∗(j, k) · w(j, k)

3

=
2
(
w(i, j) · c∗(i, j) + w(j, k) · c∗(j, k) + w(i, k) · c∗(i, k)

)
3

.

On the other hand, if ℓ∗(y, i, j) = u, according to the definition of the truncated LP solution,
yℓ∗(i,j)−1(i, j) = 0. In this case,

∑
(i′,j′)∈tw(i

′, j′) · E[Mi′,j′,t] = 0. Accordingly, when the corre-

sponding edge is non-pivot, we can define Bi,j,t, Bi,k,t, Bj,k,t
def
= 2 · 1(ℓ∗(y, i, j) > u) to prove the

first bullet of Lemma 6.2. Furthermore, we classify the charges on (i, j) and (i, k) into the first
type, while we classify the charge on (j, k) into the second type. Note that in this class of triangles,
when (i, j) or (i, k) is non-pivot, there is a random pivot edge. Because of Lemma 5.5, when being
non-pivot, i, j (or i, k) will be partitioned into different sets on line 26 with probability at least
α = 1

3 , which is at least Ω(1) · Bi,j,t (resp., Ω(1) · Bi,k,t). Therefore, this definition for (i, j) and
(i, k) satisfies the condition of Lemma 4.6 with q = Ω(1). Next, we will upper bound the expected
total charge of the second type on the random edges in this class of triangles.

Bounding the total charges of the second type. Fix an edge (j, k) ∈ E. In any recursive
call with an upper bound level u, if B(2)

j,k,t ̸= 0, where the pivot in the call is i and t = (i, j, k), we
have ℓ∗(y, i, j) > u. At the same time, the algorithm modifies the distance of (j, k) to dℓ∗(y,i,j) and
partitions j, k to a child call with upper bound level u′ = ℓ∗(y, i, j) > u. Therefore, the recursive
calls that charge (j, k) for the second type must have distinct upper bound levels u, and thus∑

t:(i,j)∈tB
(2)
j,k,t ≤ O(L).

On the other hand, we have the following characterization for the dominant levels of each
edge in each recursive call: the dominant level equals either its dominant level in y∗ or the upper
bound level u of the call. Its proof follows the fact that the truncated LP solution satisfies ∀ℓ <
u,∆yℓ(i, j) = 0, ∆yu(i, j) = y∗u(i, j) and ∀ℓ > u,∆yℓ(i, j) = ∆y∗ℓ (i, j) in a call with upper bound
level u. Furthermore, because descendant calls have higher upper bound levels, if the dominant
level of edge (i, j) does not equal ℓ∗(y∗, i, j) in a call, it will no longer equal ℓ∗(y∗, i, j) in all its
descendant calls. Formally, all previous arguments can be summarized by the following lemma.

Lemma 6.3. In any recursive call with an upper bound level u, the dominant distance level of any
edge (i, j) satisfies ℓ∗(y, i, j) = u or ℓ∗(y, i, j) = ℓ∗(y∗, i, j). In particular, if ℓ∗(y, i, j) = u in any
recursive call with truncated LP solution y and upper bound level u, ℓ∗(y′, i, j) = u′ in any of its
descendant calls with truncated LP solution y′ and upper bound u′.
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In a recursive call, we call vertices i ̸= j, k a bad pivot of (j, k) if ℓ∗(y, i, j) = ℓ∗(y, i, k) > u.
Otherwise, we call i a good pivot. Because of Lemma 6.3, any bad pivot i of (j, k) satisfies ℓ∗(y, i, j) =
ℓ∗(y∗, i, j), and good pivots in a call never become bad in its descendant calls. Further, if the pivot i
is bad in the recursive call, j, k will appear in a child call with an upper bound level u′ = ℓ∗(y∗, i, j).
Therefore, any bad pivot i′ with ℓ∗(y∗, i′, j) ≥ ℓ∗(y∗, i, j) will become good (or disappear) in the
descendant calls. Let B

(2)
(n′) denote an upper bound for the expected total charges of the second

type on (j, k) in a recursive call and its descendant calls, where there are at most n′ bad pivots
for the edge. It is clear that

∑
t:j,k∈t E[B

(2)
j,k,t] ≤ B

(2)
(n − 2). We claim that B

(2)
(0) = 0, and that

B
(2)

(n′) ≤ 4 lnn′ + 2 for any n′ ≥ 1 to finish proving that
∑

t:j,k∈t E[B
(2)
j,k,t] = O(log n). We prove

the claim by induction. The base case is when n′ = 0. It is clear that we have B
(2)

(0) = 0 because
there is no bad pivot and there is no charge of the second type on (j, k). For n′ ≥ 1, let n′

ℓ be the
number of bad pivots i with ℓ∗(y, i, j) ≥ ℓ in the recursive. Based on our previous discussion, we
have

B
(2)

(n′) ≤ 2 +
∑
ℓ>u

n′
ℓ − n′

ℓ+1

n′ ·B(2)
(n′

ℓ+1)

≤ 2 +
∑
i∈[n′]

1

n′ ·B
(2)

(i− 1)

≤ 2 +
∑

i∈[n′−1]

4 ln i+ 2

n′

≤ 4− 2

n′ +
4

n′

∫ n′

1
lnx dx

= 4− 2

n′ +
(
4 lnn′ − 4 +

4

n′

)
≤ 4 lnn′ + 2 .

7 16-Approximation Analysis for k-Partite Graphs

In this section, we prove that Algorithm 1 is a 16-approximation algorithm for unweighted Ul-
trametric Violation Distance on complete k-partite graphs by appropriate choices of the
parameters α, β. More specifically, we will prove the following theorem:

Theorem 7.1. If α = 3
8 , β = 2

3 , Algorithm 1 is a randomized polynomial-time 16-approximation
algorithm for Ultrametric Violation Distance on complete k-partite graphs.

We shall first prove the following analog Lemma 7.2 of Lemma 5.5. To ensure that endpoints of
a non-pivot edge are partitioned into different sets on line 26 when one of the pivot edges is random,
which is a frequently used property in the proof in Section 5, our choice of the parameter β follows
the criteria αβ and α(1−β)

1−αβ can both be lower bounded by some constant.

Lemma 7.2. Consider any recursive call LP-UMVD-Pivot(V, x, u) with |V | > 2. Suppose i is the
pivot vertex of the call. For any (j, k) ∈

(
V \{i}

2

)
, the probability that j, k are partitioned into different

sets on line 26 can be lower bounded by

• 1 if both (i, j) and (i, k) are deterministic in the call but they have different dominant levels,

• αβ if one of (i, j) and (i, k) is random in E∅, or

• α(1−β)
1−αβ if one of (i, j) and (i, k) is random in E.
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Proof. For the first bullet, according to the algorithm, the distances of the pivot edges (i, j) and
(i, k) are deterministically different, and thus j, k are partitioned into different sets with probability
1 on line 26.

For the second bullet, suppose the truncated LP solution in the call is y. W.l.o.g., we assume
that (i, j) is random in E∅. Note that this implies ∀ℓ ∈ [L],∆yℓ(i, j) ≤ ∆yℓ∗(i,j)(i, j) ≤ 1 − αβ.
According to the CCDF (5), the probability that j, k are partitioned into different sets on line 26 is

1−
∑
ℓ∈[L]

Pr[j, k ∈ Vℓ] = 1−
∑
ℓ∈[L]

Pr[x′(i, j) = dℓ] · Pr[x′(i, k) = dℓ]

= 1−
∑
ℓ∈[L]

∆yℓ(i, j) · Pr[x′(i, k) = dℓ]

≥ 1−
∑
ℓ∈[L]

(1− αβ) · Pr[x′(i, k) = dℓ]

= 1− (1− αβ) = αβ .

For the third bullet, suppose the truncated LP solution in the call is y. W.l.o.g., we assume that
(i, j) is random in E. Note that this implies ∀ℓ ∈ [L],∆yℓ(i, j) ≤ ∆yℓ∗(i,j)(i, j) ≤ 1− α. According
to the CCDF (4), the probability that j, k are partitioned into different sets on line 26 is

1−
∑
ℓ∈[L]

Pr[j, k ∈ Vℓ] = 1−
∑
ℓ∈[L]

Pr[x′(i, j) = dℓ] · Pr[x′(i, k) = dℓ]

= 1−
∑
ℓ∈[L]

(yℓ(i, j)− αβ)+ − (yℓ−1(i, j)− αβ)+

1− αβ
· Pr[x′(i, k) = dℓ]

≥ 1−
∑
ℓ∈[L]

∆yℓ(i, j)

1− αβ
· Pr[x′(i, k) = dℓ] (LP constraint (2))

≥ 1−
∑
ℓ∈[L]

1− α

1− αβ
· Pr[x′(i, k) = dℓ]

= 1− 1− α

1− αβ
=

α(1− β)

1− αβ
.

Next, we present the key Lemma 7.3 of this section, which gives the condition we need in
Lemma 4.5 and Lemma 4.6 under the specific choices of α, β. As the proof of the lemma is quite
technically involved by the proofs we have shown in the previous two sections, we defer it to
Appendix B.7.

Lemma 7.3. If α = 3
8 , β = 2

3 , there exists a charging scheme such that

1. for any triangle t ∈
(
[n]
3

)
,∑

(i,j)∈t

E[Mi,j,t|At] ≤
∑

(i,j)∈t∩E

E[Bi,j,t|At] · c∗(i, j) . (14)

2. for any b > 0, (i, j) ∈ E and any t ∋ i, j, in any recursive call, conditioning on At and that
(i, j) is a non-pivot edge charged by Bi,j,t = b, the probability that i and j are partitioned into
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ℓ∗−1 ℓ∗

dist. of x′(j, k)

αβ

(j, k) ∈ E

(i, k) ∈ E∅

(i, j) ∈ E

Figure 2: An example of the rounding process in (d, d, r)-same-triangles with a deterministic edge
in E∅. The length of the red part indicates the probability that (i, j) is modified in this triangle
(up to a constant factor). The total length of the green parts indicates the LP cost of (i, j).

different sets on line 26 of Algorithm 1 is at least qi,j · b, where

qi,j =


1/16 if (i, j) ∈ EL

1/8 if (i, j) ∈ EHD

3/32 if (i, j) ∈ EHR

A technical highlight in this section is that we round differently for edges in E versus edges in E∅.
This overcomes the challenge we face for (d, d, r)-same-triangles when analyzing the weighted cases
with triangle inequality constraints. Specifically, in a recursive call with truncated LP solution
y, when considering a (d, d, r)-same-triangle t = (i, j, k), in which (j, k) is the random edge, we
encounter the issue if the triangle has a deterministic edge in E∅, say (i, k) ∈ E∅. We can upper
bound the probability that (i, j) is modified by c∗(i, j)+c∗(i, k) (shown by Eqn. (13) and Lemma 5.3).
However, on k-partite graphs, the LP contribution of (i, k) is 0, and we need to charge the edge
(j, k) when c∗(i, j) ≪ c∗(i, k). As in the analysis of the weighted case, this only results in an
approximation ratio of O(min{L, log n}). To get a constant factor approximation, we modify the
algorithm so as to upper bound the probability that (i, j) is modified solely by c∗(i, j). We introduce
different thresholds to determine whether edges in E and E∅ are deterministic and round random
edges in E in a (slightly) different way. As shown in Section 3, the threshold for edges in E is
1 − α while the threshold for edges in E∅ is 1 − αβ. Suppose ℓ∗ is the dominant level of (i, j).
According to the CCDF (4), the distance of the random edge (j, k) ∈ E is strictly greater than dℓ∗

with probability (yℓ∗−1(j,k)−αβ)+

1−αβ . Using the LP constraint (1) and the fact that the deterministic
edge (i, k) has yℓ∗−1(i, k) < αβ, we can upper bound the probability that (i, j) is modified solely by
O(yℓ∗−1(i, j)). The detailed analysis can be found in Case 2 of Appendix B.7.2. See Figure 2 for an
illustration of why our algorithm resolves this issue.

Finally, we establish the approximation ratio for k-partite graphs.

Proof of Theorem 7.1. Because of Lemma 4.6 and the second bullet of Lemma 7.3, we can present
the second condition of Lemma 4.5 as follows:

∀(i, j) ∈ E,
∑
t:i,j∈t

E[Bi,j,t] ≤


16 if (i, j) ∈ EL ,

8 if (i, j) ∈ EHD ,

32/3 if (i, j) ∈ EHR .
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Because the first bullet of Lemma 7.3 meets that of Lemma 4.5, if α = 8
3 , β = 2

3 , Algorithm 1 is
at most max{16, 8 + 8

5 ,
32
3 + 8

3} = 16-approximation for Ultrametric Violation Distance on
complete k-partite graphs.
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A Examples Regarding Different Rounding Schemes

In this appendix section, we present examples demonstrating the issues with the purely randomized
rounding scheme and how our rounding scheme resolves them. Our first example is an unweighted
Ultrametric Violation Distance instance on complete k-partite graphs with L = 2, where
triple-based analysis encounters issues when analyzing the purely randomized rounding scheme to
a constant factor approximation.

Example A.1. Consider an Ultrametric Violation Distance instance on complete k-partite
graphs with L = 2. Consider three distinct vertices i, j, k ∈ [n]. Suppose (i, j), (i, k) ∈ E, (j, k) ∈ E∅,
and the input satisfies xin(i, j) = d2, xin(i, k) = xin(j, k) = d1. In the language of Corre-
lation Clustering, (i, j) is a + edge while (i, k) and (j, k) are - edges. Because we assume
yL(u, v) = 1 for any distinct u, v ∈ [n], we can use a, b, c to respectively denote the only variables
y1(i, j), y1(i, k), y1(j, k) and we call them the lengths of the edges. Pick a huge m = ω(1) and a tiny
ϵ = o(1/m). Suppose the LP solution gives a = mϵ, b = 1− ϵ and c = 1− (m+ 1)ϵ.

The LP contributions on these three edges are respectively mϵ, ϵ, 0 because edges in E∅ do not
contribute to the LP objective. On the other hand, if we use the purely randomized rounding, when
the pivot is k, with probability b(1−c) = (1−o(1)) · (m+1)ϵ, x′(i, k) = d1, x

′(j, k) = d2 and we need
to modify the distance of (i, j) to d1 accordingly. Hence, the expected cost of the algorithm in this
triangle is at least (1−o(1)) · (m+1)ϵ. If we want the cost to be upper bounded by the charges on the
edges, we need: either charge (i, j) by a constant multiple of its LP contribution; or charge (i, k) by
a Ω(m) multiple of its LP contribution. If we want to prove a constant factor approximation, we can
only place our hope on charging (i, j). However, with probability bc = 1−o(1), x′(i, k) = x′(j, k) = d1
and (i, j) will appear in another recursive call. This means that the total charge on (i, j) can be
a Ω(1)/(1 − bc) = ω(1) multiple of its LP contribution, which does not lead to a constant factor
approximation analysis.

Notice that in the first example, the three edges are deterministic if α is some positive constant
and they have very low LP contributions. Our second example is an arbitrary weighted Ultra-
metric Violation Distance instance with L = 2, which is more general than the k-partite cases.
In this example, our rounding scheme will not modify any edge in such triangles. This example is
a formal version of the example we present in the Introduction.

Example A.2. Consider any weighted Ultrametric Violation Distance instance with L = 2
and the triangle inequality constraint. Suppose we choose parameters α = 1

3 , β = 0 in Algorithm 1.
Consider three distinct vertices i, j, k ∈ [n]. Because we have w.l.o.g. assumed yL(u, v) = 1 for
any distinct u, v ∈ [n], we can use a, b, c to denote the only variables y1(i, j), y1(i, k), y1(j, k) and
we call them the lengths of the edges. Consider the scenario where (i, j), (i, k) and (j, k) are all
deterministic, i.e., a, b, c ∈ [0, 13) ∪ (23 , 1]. If the length of an edge is less than 1

3 , the dominant
level is 2; otherwise, the dominant level is 1. In addition, we assume that all three edges have LP
contributions less than 1

3 , which implies their input equals their dominant distance level. To show
that our algorithm does not modify any edge in this triangle, it suffices to show that the ultrametric
inequality is automatically satisfied if we set the distances to the dominant levels.

By setting the distances to the dominant distance levels, the only possible violation of the ultra-
metric inequality is when two of them have dominant level 2 and the other one has dominant level
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1, w.l.o.g. say, (j, k) is the only edge with dominant level 1. If this violation happens, we will have
a, b < 1

3 and c > 2
3 , violating the LP constraint (1) by a+ b < c.

B Omitted Proofs

B.1 Proof of Lemma 3.3

First, we can observe that the upper bound level u automatically implies an upper bound for the
input:

Lemma B.1. In any call LP-UMVD-Pivot(V, x, u) of our algorithm, the input x satisfies x(i, j) ≤
du for any (i, j) ∈

(
V
2

)
.

Proof. We prove the lemma by induction. The base case is clear for the root call because u = 1 and
d1 equals the largest entry in xin. Suppose the lemma holds for LP-UMVD-Pivot(V, x, u), whose
random pivot equals i, and consider any of its children calls LP-UMVD-Pivot(Vℓ, x

′, ℓ). According
to the definition of Vℓ (line 26), for any j, k ∈ Vℓ, x′(i, j) = x′(i, k) = dℓ. Because the algorithm sets
x′(j, k) to min{x(j, k), x′(i, j)} in this case, we have x′(j, k) ≤ dℓ and we prove the lemma for this
child call.

Next, we show a stronger version of the lemma by induction: each call LP-UMVD-Pivot(V, x, u)
returns an ultrametric x′ satisfying x′(i, j) ≤ du for any (i, j) ∈

(
V
2

)
. The base cases are clear when

|V | ≤ 2 or u = L.
Consider a call with |V | = n0 (n0 ≥ 3) and u < L. Suppose we have shown the stronger version

for any |V | < n0. Observe that the set of return values in x′ is a subset of those in x. Because of
Lemma B.1, we have x′(i, j) ≤ du for any (i, j) ∈

(
V
2

)
. Suppose i is the random pivot of the call. We

discuss two cases to show that the returned x′ satisfies the ultrametric inequality for any triangle
in V .

The triangle involves i. Fix any distinct j, k ∈ V \{i}. If x′(i, j) = x′(i, k), j, k will appear in a
child call, and thus the ultrametric inequality is satisfied because x′(j, k) ≤ x(i, j) according to the
induction hypothesis. If x′(i, j) ̸= x′(i, k), the algorithm sets x′(j, k) to max{x′(i, j), x′(i, k)} and
thus the ultrametric inequality is satisfied.

The triangle does not involve i. Fix any distinct j, k, r ∈ V \ {i}. If x′(i, j) = x′(i, k) =
x′(i, r), the vertices appear in a child call and thus satisfy the ultrametric inequality according
to the induction hypothesis. Otherwise, either one of them is strictly greater than two others
or two of them are equal and strictly greater than the other one. For the first case, w.l.o.g.,
suppose x′(i, r) > x′(i, j), x′(i, k). The algorithm then sets x′(j, r) and x′(k, r) to x′(i, r). Therefore,
x′(j, k) = max{x′(i, j), x′(i, k)} or j, k will appear in a child call, where we both have x′(j, k) <
x′(j, r) according to the induction hypothesis. For the second case, w.l.o.g., suppose x′(i, r) <
x′(i, j) = x′(i, k). The algorithm then sets x′(j, r) and x′(k, r) to x′(i, j). And, j, k will appear in a
child call and thus x′(j, k) ≤ x′(i, j) according to the induction hypothesis.

B.2 Proof of Lemma 4.1

Because (i, j) is initially deterministic, if the dominant level ℓ̃(i, j) = ℓ∗(y∗, i, j), c∗(i, j) = 1 −
∆y∗ℓ∗(i,j)(i, j) < α, violating (i, j) is a high-cost edge. Therefore, ℓ̃(i, j) ̸= ℓ∗(y∗, i, j). Since y∗0(i, j) =

0 and y∗L(i, j) = 1,
∑L

ℓ=1∆y∗ℓ (i, j) = 1. Hence, c∗(i, j) = 1−∆y∗
ℓ̃(i,j)

(i, j) ≥ ∆y∗ℓ∗(i,j)(i, j) > 1− α.
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B.3 Proof of Lemma 4.2

Suppose u is the level in the recursive call and u′ is the level in the child call. According to the
algorithm, we have u′ ≥ u. Fix any edge (i, j) ∈

(
V ′

2

)
.

If ℓ∗(y, i, j) > u′, since the algorithm sets both yℓ(i, j) and y′ℓ(i, j) to y∗ℓ (i, j) for any ℓ ∈
{u′, u′+1, · · · , L}, we have ∆y′ℓ∗(y,i,j)(i, j) = ∆y∗ℓ∗(y,i,j)(i, j) = ∆yℓ∗(y,i,j)(i, j). Therefore, according
to the definition of the dominant level, ∆y′ℓ∗(i,j)(i, j) ≥ ∆y′ℓ∗(y,i,j)(i, j) = ∆yℓ∗(i,j)(i, j).

Notice that ∆yℓ(i, j) ≤ y∗ℓ (i, j) for any ℓ ∈ [L] and ∆y′u′(i, j) = y∗u′(i, j). On the other hand, if
ℓ∗(y, i, j) ≤ u′, because of Lemma 3.1 and the LP constraint (2), we have ∆y′u′(i, j) = y∗u′(i, j) ≥
y∗ℓ∗(y,i,j)(i, j) ≥ ∆yℓ∗(i,j)(i, j) and thus ∆y′ℓ∗(i,j)(i, j) ≥ ∆yℓ∗(i,j)(i, j).

In particular, in the root call, because u = 1, y∗ equals the truncated LP solution. Therefore,
for any (i, j) ∈

(
[n]
2

)
, ∆yℓ∗(i,j)(i, j) ≥ ∆y∗ℓ∗(i,j)(i, j).

B.4 Proof of Lemma 4.4

We prove the lemma by a top-down induction on the recursive calls. The base case is the root call
LP-UMVD-Pivot([n], xin, 1). In the root call, because u = 1, the truncated LP solution y equals y∗.
For any (i, j) ∈ EL, according to the definition of low-cost edges, ∆yℓ̃(i,j)(i, j) = 1− c∗(i, j) > 1−α.
From Lemma 3.1 and α ≤ 1

2 , ℓ̃(i, j) = ℓ∗(y, i, j). Since x(i, j) = dℓ̃(i,j) in the root call, we prove the
lemma for the base case.

Consider any call LP-UMVD-Pivot(V, x, u) and any child call LP-UMVD-Pivot(Vℓ, x
′, ℓ). Note

that ℓ ≥ u and the input distance x′ of the child call is consistent with the x′ in the parent call
before partitioning non-pivot vertices (line 26). Assume we have proved the lemma for the parent
call. Suppose the truncated LP solutions in the calls are respectively y and y′ and the pivot
vertex of the parent call is i. Consider any edge (j, k) ∈

(
Vℓ
2

)
. According to the definition of Vℓ,

x′(i, j) = x′(i, k) = dℓ. Because the algorithm sets x′(j, k) to min{x(j, k), dℓ} in the parent call, we
can then prove the lemma for the child call by discussing the following two cases.

1. If x(j, k) ≥ dℓ, x′(j, k) = dℓ. According to the induction hypothesis, dℓ∗(y,j,k) = x(j, k) ≥ dℓ
and thus ℓ∗(y, i, j) ≤ ℓ. Because of the definition of the truncated LP solutions, the LP
constraint (2) and Corollary 4.3, we have ∆y′ℓ(i, j) = y∗ℓ (i, j) ≥ y∗ℓ∗(y,i,j)(i, j) ≥ ∆yℓ∗(i,j)(i, j) >

1− α. Since
∑

ℓ∈[L]∆y′ℓ(j, k) = 1 (Lemma 3.1) and α ≤ 1
2 , ℓ

∗(y′, j, k) = ℓ and thus x′(j, k) =
dℓ∗(y′,j,k).

2. If x(j, k) < dℓ, x′(j, k) = x(j, k). According to the induction hypothesis, dℓ∗(y,j,k) = x(j, k)
and thus x′(j, k) = dℓ∗(y,i,j) and ℓ∗(y, j, k) > ℓ ≥ u. Because of the definition of the truncated
LP solutions and Corollary 4.3, ∆y′ℓ∗(y,j,k)(j, k) = ∆y∗ℓ∗(y,j,k)(j, k) = ∆yℓ∗(j,k)(j, k) > 1 − α.
Since

∑
ℓ∈[L]∆y′ℓ(j, k) = 1 (Lemma 3.1) and α ≤ 1

2 , ℓ
∗(y′, i, j) = ℓ∗(y, i, j) and thus x′(j, k) =

dℓ∗(y′,i,j).

In particular, because the algorithm sets the distances of deterministic pivot edges to its domi-
nant distance level, any edge (i, j) ∈ EL is not modified in any recursive call where it appears as a
pivot edge.

B.5 Missing proof of Lemma 5.2

B.5.1 (d, d, r)-diff-triangles

W.l.o.g. we assume (i, j) and (i, k) are deterministic, and ℓ∗(y, i, j) < ℓ∗(y, i, k) (equivalently,
dℓ∗(y,i,j) > dℓ∗(y,i,k)). Because of Lemma 4.4, the input distances of (i, j) and (i, k) are respectively
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dℓ∗(y,i,j) and dℓ∗(y,i,k). Since dℓ∗(y,i,j) > dℓ∗(y,i,k), Mi,j,t (or Mi,k,t) equals 1 only when the pivot is k
(resp., j), it is low-cost and the random distance x′(j, k) ̸= dℓ∗(y,i,j), i.e.,

Mi,j,t = 1(k is the pivot vertex) · 1((i, j) ∈ EL) · 1(x′(j, k) ̸= dℓ∗(y,i,j)) ,

Mi,k,t = 1(j is the pivot vertex) · 1((i, k) ∈ EL) · 1(x′(j, k) ̸= dℓ∗(y,i,j)) .

According to the CCDF (11) of the random distance, because y is feasible in (UMVD LP), the
probability that x′(j, k) ̸= dℓ∗(y,i,j) is

1−∆yℓ∗(i,j)(j, k) = 1− yℓ∗(i,j)(j, k) + yℓ∗(i,j)−1(j, k)

≤ 1− (yℓ∗(i,j)(i, j)− yℓ∗(i,j)(i, k)) + yℓ∗(i,j)−1(i, j) + yℓ∗(i,j)−1(i, k)

≤ (1−∆yℓ∗(i,j)(i, j)) + 2yℓ∗(i,k)−1(i, k) . (15)

Because of Corollary 4.3, (j, k) ∈ EHR and thus c∗(i, j) ≥ α. Note that the deterministic edge (i, k)
satisfies yℓ∗(i,k)−1(i, k) < α (Eqn. (12)). We can upper bound 1−∆yℓ∗(i,j)(j, k) by 1−∆yℓ∗(i,j)(i, j)+
yℓ∗(i,k)−1(i, k) + c∗(j, k). Therefore, in this class of triangles,

∑
(i′,j′)∈t

E[Mi′,j′,t] ≤
2
(
1−∆yℓ∗(i,j)(i, j) + yℓ∗(i,k)−1(i, k) + c∗(j, k)

)
3

.

Accordingly, when the corresponding edge is non-pivot, we define Bi,j,t, Bi,k,t, Bj,k,t as follows:

Bi,j,t
def
=


2 if (i, j) ∈ EL

2α
1−α if (i, j) ∈ EHD

1 if (i, j) ∈ EHR

, Bi,k,t
def
=


2 if (i, k) ∈ EL

2α
1−α if (i, k) ∈ EHD

0 if (i, k) ∈ EHR

, Bj,k,t
def
= 2

Because of Lemma 5.3 and 5.4, this definition satisfies

E[Bi,j,t] · c∗(i, j) ≥
2

3
· (1−∆yℓ∗(i,j)(i, j)) ,

E[Bi,k,t] · c∗(i, k) ≥
2

3
· yℓ∗(i,k)−1(i, k) , E[Bj,k,t] · c∗(j, k) ≥

2

3
· c∗(j, k) ,

and thus implies the first bullet of Lemma 5.2.
Further, when the edge (i, j) (or (i, k)) is non-pivot, one of the pivot edges in the triangle is

random. Because of Lemma 5.5, the probability i, j (or i, k) are then partitioned into different sets
on line 26 is at least α, which is at least

α
2 ·Bi,j,t if (i, j) ∈ EL

1−α
2 ·Bi,j,t if (i, j) ∈ EHD

α ·Bi,j,t if (i, j) ∈ EHR

and


α
2 ·Bi,k,t if (i, k) ∈ EL

1−α
2 ·Bi,k,t if (i, k) ∈ EHD

1 ·Bi,k,t if (i, k) ∈ EHR

.

When the edge (j, k) is non-pivot, two pivot edges are both deterministic but have different dominant
levels. Because of Lemma 5.5, the probability i, j (or i, k) are then partitioned into different sets on
line 26 is 1, which is at least 1

2 ·Bj,k,t ≥ max{1−α
2 , α} ·Bj,k,t because α ≤ 1

2 . Hence, this definition
satisfies the second bullet of Lemma 5.2 for this case.
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B.5.2 (d, r, r)-triangles

W.l.o.g., we assume (j, k) is the deterministic edge. Because of Corollary 4.3, (i, j), (i, k) ∈ EHR and
thus Mi,j,t = Mi,k,t = 0. If (j, k) /∈ EL, Mj,k,t = 0. Accordingly, by defining Bi,j,t, Bi,k,t, Bj,k,t

def
= 0,

we show Lemma 5.2 for the case (j, k) /∈ EL.
Next, we consider the case (j, k) ∈ EL. Only when the pivot in the recursive call is i, the

low-cost edge (j, k) can be modified. Because of Lemma 4.4, the input distance of the call satisfies
x(j, k) = dℓ∗(y,j,k). If the random distances x′(i, j), x′(i, k) satisfy x′(i, j) = x′(i, k) ≥ dℓ∗(y,j,k)
or x′(i, j) < dℓ∗(y,j,k) = x′(i, k) or x′(i, j) = dℓ∗(y,j,k) > x′(i, k), edge (j, k) is not modified, i.e.,
Mj,k,t = 0. Therefore, according to the CCDF (11) of the random distance, in this case,

∑
(i′,j′)∈t

E[Mi′,j′,t] =
1

3
·
(
1−

ℓ∗(y,j,k)∑
ℓ=1

∆yℓ(i, j) ·∆yℓ(i, k)−∆yℓ∗(j,k)(i, k)(1− yℓ∗(j,k)(i, j))

−∆yℓ∗(j,k)(i, j)(1− yℓ∗(j,k)(i, k))

)
.

(16)

Based on the above equality, we can further prove the following upper bound for the expected
number of modifications on low-cost edges in this triangle.

Lemma B.2. If α ∈ [3−
√
5

2 , 12 ],
∑

(i′,j′)∈t E[Mi′,j′,t] ≤ 1
3 · (c

∗(i, j) + c∗(i, k) + c∗(j, k)).

Proof. We shall prove the lemma by discussing the magnitude of ℓ∗(y, i, j), ℓ∗(y, i, k), and ℓ∗(y, j, k).

If ℓ∗(y, i, j), ℓ∗(y, i, k) > ℓ∗(y, j, k),

c∗(i, j) + c∗(i, k) ≥ yℓ∗(i,j)−1(i, j) + yℓ∗(i,k)−1(i, k) (Lemma 5.3)

≥ yℓ∗(j,k)(i, j) + yℓ∗(j,k)(i, k) (LP constraint (2))

≥ yℓ∗(j,k)(j, k) (LP constraint (1))

≥ 1− c∗(j, k) . (Lemma 5.3)

Because the right-hand side of Eqn. (16) can be trivially upper bounded by 1
3 ,

∑
(i′,j′)∈t E[Mi′,j′,t] ≤

1
3 · (c

∗(i, j) + c∗(i, k) + c∗(j, k)).

If ℓ∗(y, i, j) < ℓ∗(y, j, k) (or ℓ∗(y, i, k) < ℓ∗(y, j, k) in symmetry), we can upper bound Eqn. (16)
by 1

3 · (1−∆yℓ∗(i,j)(i, j) ·∆yℓ∗(i,j)(i, k)). Because y satisfies the LP constraint (1) and (2),

yℓ∗(i,j)(i, j)− yℓ∗(i,j)(i, k) ≤ yℓ∗(i,j)(j, k) ≤ yℓ∗(j,k)−1(j, k) ,

yℓ∗(i,j)−1(i, j)− yℓ∗(i,j)−1(i, k) ≥ −yℓ∗(i,j)−1(j, k) ≥ −yℓ∗(j,k)−1(j, k) ,

and thus ∆yℓ∗(i,j)(i, j) − ∆yℓ∗(i,j)(i, k) ≤ 2yℓ∗(j,k)−1(j, k). Because of Lemma 5.3, ∆yℓ∗(i,j)(i, j) ≥
1− c∗(i, j) and yℓ∗(j,k)−1(j, k) ≤ c∗(j, k). Therefore, ∆yℓ∗(i,j)(i, k) ≥ 1− c∗(i, j)− 2c∗(j, k). We can
upper bound Eqn. (16) in this case by

1

3
·
(
1−∆yℓ∗(i,j)(i, j) ·∆yℓ∗(i,j)(i, k)

)
≤ 1

3
·
(
1− (1− c∗(i, j)) · (1− c∗(i, j)− 2c∗(j, k))

)
(17)

≤ 1

3
·
(
2(1− c∗(i, j)) · c∗(j, k) + 1− (1− c∗(i, j))2

)
=

1

3
·
(
(2− 2c∗(i, j)) · c∗(j, k) + (2− c∗(i, j)) · c∗(i, j)

)
≤ 2− α

3
·
(
c∗(i, j) + c∗(j, k)

)
. (c∗(i, j) ≥ α)
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On the other hand, because the random edge (i, k) ∈ EHR, we can also upper bound Eqn. (16) by
c∗(i,k)
3α . Averaging the previous two upper bounds of Eqn. (16), we can get

∑
(i′,j′)∈t

E[Mi′,j′,t] ≤
1

1 + 2α− α2
· 2− α

3
·
(
c∗(i, j) + c∗(j, k)

)
+

2α− α2

1 + 2α− α2
· c

∗(i, k)

3α

≤ 2− α

3(1 + 2α− α2)
·
(
c∗(i, j) + c∗(i, k) + c∗(j, k)

)
≤ 1

3
·
(
c∗(i, j) + c∗(i, k) + c∗(j, k)

)
. (∀α ∈

[
3−

√
5

2 , 12
]
, 2− α ≤ 1 + 2α− α2)

If ℓ∗(y, i, j) = ℓ∗(y, j, k) (or ℓ∗(y, i, k) = ℓ∗(y, j, k) in symmetry), we can upper bound Eqn. (16)
by 1 − ∆yℓ∗(i,j)(i, j) · (1 − yℓ∗(i,j)−1(i, k)). Because of Lemma 5.3 and because the truncated LP
solution y satisfies LP constraint (1),

yℓ∗(i,j)−1(i, k) ≤ yℓ∗(i,j)−1(i, j) + yℓ∗(i,j)−1(j, k) ≤ c∗(i, j) + c∗(j, k) .

Hence, we can further upper bound Eqn. (16) by

1

3
·
(
1− (1− c∗(i, j)) · (1− c∗(i, j)− c∗(j, k))

)
,

which is stronger than (17). Following the steps in the previous case, we can then similarly show∑
(i′,j′)∈t E[Mi′,j′,t] ≤ 1

3 · (c
∗(i, j) + c∗(i, k) + c∗(j, k)).

Accordingly, when the corresponding edge is non-pivot, we define Bi,j,t, Bi,k,t, Bj,k,t as follows:

Bi,j,t, Bi,k,t, Bj,k,t
def
= 1 ,

which implies the first bullet of Lemma 5.2:∑
(i′,j′)∈t

E[Bi′,j′,t] · c∗(i′, j′) =
1

3
·
(
c∗(i, j) + c∗(i, k) + c∗(j, k)

)
≥

∑
(i′,j′)∈t

E[Mi′,j′,t] .

Note that because of Lemma 5.5, when being non-pivot, endpoints of all three edges in the
triangle will be partitioned into different sets on line 26 with probability at least α, which is α·Bi,j,t ≥
1−α
2 ·Bi,j,t (resp., for Bi,k,t and Bj,k,t) when α ≥ 3−

√
5

2 . Therefore, this definition of Bi′,j′,ts satisfies
the second bullet of Lemma 5.2 for this class of triangles.

B.6 Missing proof of Lemma 6.2

B.6.1 (d, d, r)-diff-triangles

W.l.o.g. we assume (i, j) and (i, k) are deterministic, and (i, j) has a lower dominant level, i.e.,
ℓ∗(y, i, j) < ℓ∗(y, i, k) (equivalently, dℓ∗(y,i,j) > dℓ∗(y,i,k)). Because of Corollary 4.3, we have (j, k) ∈
EL, Mj,k,t = 0 and c∗(j, k) ≥ α. Recall that in Section 5, we have shown for this class of triangles:

Mi,j,t = 1(k is the pivot vertex) · 1((i, j) ∈ EL) · 1(x′(j, k) ̸= dℓ∗(y,i,j)) ,

Mi,k,t = 1(j is the pivot vertex) · 1((i, k) ∈ EL) · 1(x′(j, k) ̸= dℓ∗(y,i,j)) ,

and the probability that x′(j, k) ̸= dℓ∗(y,i,j) is at most (1−∆yℓ∗(i,j)(i, j))+2yℓ∗(i,k)−1(i, k). Because
of Lemma 5.3, 1 −∆yℓ∗(i,j)(i, j) ≤ c∗(i, j), yℓ∗(i,k)−1(i, k) ≤ c∗(i, k). Because edges (i, j) and (i, k)
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are deterministic, 1 − ∆yℓ∗(i,j)(i, j), yℓ∗(i,k)−1(i, k) < α ≤ c∗(j, k) (Eqn. (12)). Therefore, in this
class of triangles, we have∑

(i′,j′)∈t

w(i′, j′) · E[Mi′,j′,t] ≤
(1−∆yℓ∗(i,j)(i, j)) + 2yℓ∗(i,k)−1(i, k)

3
·
(
w(i, j) + w(i, k)

)
≤ w(i, j) · c∗(i, j) + 2w(i, k) · c∗(i, k)

3
+

2yℓ∗(i,k)−1(i, k) · (w(i, k) + w(j, k))

3

+
(1−∆yℓ∗(i,j)(i, j)) · (w(i, j) + w(j, k))

3
(triangle inequality for w)

≤ w(i, j) · c∗(i, j)+2w(i, k) · c∗(i, k)
3

+
2
(
c∗(i, k) · w(i, k)+c∗(j, k) · w(j, k)

)
3

+
c∗(i, j) · w(i, j) + c∗(j, k) · w(j, k)

3

=
2w(i, j) · c∗(i, j) + 3w(j, k) · c∗(j, k) + 4w(i, k) · c∗(i, k)

3
.

Accordingly, when the corresponding edge is non-pivot, we can define Bi,j,t, Bi,k,t, Bj,k,t
def
= 4 to

prove the first bullet of Lemma 6.2. Further, we will classify all charges into the first type, i.e.,
∀(u, v) ∈ t, B

(1)
u,v,t = Bu,v,t. Note that in this class of triangles, either there is a random pivot edge

or the two deterministic pivot edges have different dominant levels. Because of Lemma 5.5, when
being non-pivot, the endpoints of all three edges in t will be partitioned into different sets on line 26
with probability at least α = 1

3 , which is Ω(1) · B(1)
u,v,t for any (u, v) ∈ t. Therefore, this definition

satisfies the condition of Lemma 4.6 with q = Ω(1).

B.6.2 (d, r, r)-triangles

W.l.o.g., we assume (j, k) is the deterministic edge. Because of Corollary 4.3, (i, j), (i, k) ∈ EHR,
and we have Mi,j,t = Mi,k,t = 0 and c∗(i, j), c∗(i, k) ≥ α = 1

3 . Therefore, in this class of triangles,∑
(i′,j′)∈t

w(i′, j′) · E[Mi′,j′,t] ≤
w(j, k)

3
≤ w(i, j) + w(i, k)

3
≤ w(i, j) · c∗(i, j) + w(i, k) · c∗(i, k) .

Accordingly, when the corresponding edge is non-pivot, we can define Bi,j,t
def
= 0 and Bi,k,t, Bj,k,t

def
= 3

to prove the first bullet of Lemma 6.2. Further, we will classify all non-trivial charges into the first
type, i.e., B(1)

i,k,t = Bi,k,t, B
(1)
j,k,t = Bj,k,t. Because of Lemma 5.5, when being non-pivot, i, k (or j, k)

will be partitioned into different sets on line 26 with probability at least α = 1
3 , which is Ω(1) ·B(1)

i,k,t

(resp., for B
(1)
j,k,t). Therefore, this definition satisfies the condition of Lemma 4.6 with q = Ω(1).

B.7 Proof of Lemma 7.3

For convenience, we assume α = 3
8 , β = 2

3 in the proof. With this assumption, the CCDF func-
tions (4) and (5) respectively become:

for (i, j) ∈ E: ∀ ℓ ∈ [L], Pr[x′(i, j) ≥ dℓ] =
(4 · yℓ(i, j)− 1)+

3
. (18)

for (i, j) ∈ E∅: ∀ ℓ ∈ [L], Pr[x′(i, j) ≥ dℓ] = yℓ(i, j) . (19)

Given the truncated LP solution y, we define an edge (i, j) to be deterministic if
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• (i, j) ∈ E and ∆yℓ∗(i,j)(i, j) > 1− α = 5
8 , or

• (i, j) ∈ E∅ and ∆yℓ∗(i,j)(i, j) > 1− αβ = 3
4 .

Otherwise, we define it to be random. In addition, we restate Lemma 7.2 with the specific choice
of α, β in the following lemma.

Lemma B.3 (Restatement of Lemma 7.2). Consider any recursive call LP-UMVD-Pivot(V, x, u)
with |V | > 2. Suppose i is the pivot vertex of the call. For any (j, k) ∈

(
V \{i}

2

)
, the probability that

j, k are partitioned into different sets on line 26 can be lower bounded by

• 1 if both (i, j) and (i, k) are deterministic in the call but they have different dominant levels,

• 1/4 if one of (i, j) and (i, k) is random in E∅, or

• 1/6 if one of (i, j) and (i, k) is random in E.

Corollary B.4. Consider any recursive call LP-UMVD-Pivot(V, x, u) with |V | > 2. Suppose i is
the pivot vertex of the call. For any (j, k) ∈

(
V \{i}

2

)
, the probability that j, k are partitioned into

different sets on line 26 can be lower bounded by 1/6 if at least one of (i, j) and (i, k) is random.

Note that each triangle cannot have exactly one edge in E because E is a k-partite graph. When
a triangle does not have any edge in E, no edge in the triangle is low-cost, and thus Mi,j,t = Mi,k,t =

Mj,k,t = 0. By trivially defining Bi,j,t, Bi,k,t, Bj,k,t
def
= 0, we can prove Lemma 7.3. Therefore, it

suffices to only consider the triangles with at least two edges in E in the rest of the analysis.
We prove the lemma by presenting the charging scheme for each class of triangles. Consider

any triangle t = (i, j, k) and any recursive call with a vertex set involving all of i, j, k. Suppose the
recursive call has a truncated LP solution y. For convenience, we will condition on At in the rest
of this section, and all expectations will be automatically conditioned on At.

B.7.1 (d, d, d)-triangles

Note that the choice of β does not influence how Algorithm 1 rounds deterministic pivot edges in E.
In Section 5, when all three edges are all in E, we have shown Lemma 5.2 for this class of triangles,
which gives a stronger condition of Lemma 4.6 than that of Lemma 7.3 under α = 3

8 . Next, we only
need to analyze the case when two edges are in E for this class of triangles.

W.l.o.g., we assume (i, j), (i, k) ∈ E and (j, k) ∈ E∅. Note that the distance of any pivot edge
(i′, j′) ∈ t is set to its dominant distance level dℓ∗(y,i′,j′). Because of Lemma 4.4, any low-cost edge
(i′, j′) has an input distance x(i′, j′) = dℓ∗(y,i′,j′). If the non-pivot edge is low-cost, it is modified
only when the ultrametric inequality is violated on the three dominant distance levels, i.e., there
exists a permutation (i′, j′, k′) of i, j, k such that ℓ∗(y, i′, j′) < min{ℓ∗(y, i′, k′), ℓ∗(y, j′, k′)}. Because
ℓ∗(y, i′, j′) < min{ℓ∗(y, i′, k′), ℓ∗(y, j′, k′)} implies

1−∆yℓ∗(i′,j′)(i
′, j′) ≥ 1− yℓ∗(i′,j′)(i

′, j′)

≥ 1− yℓ∗(i′,j′)(i
′, k′)− yℓ∗(i′,j′)(j

′, k′) (LP constraint (1))

≥ 1− yℓ∗(i′,k′)−1(i
′, k′)− yℓ∗(j′,k′)−1(j

′, k′) (LP constraint (2))

≥ 1− (1−∆yℓ∗(i′,k′)−1(i
′, k′))− (1−∆yℓ∗(j′,k′)−1(j

′, k′)) . (20)

However, because all three edges are deterministic in the recursive call, 1 − ∆yℓ∗(i,j)(i, j), 1 −
∆yℓ∗(i,k)(i, k) < 3

8 and 1 − ∆yℓ∗(j,k)(j, k) < 1
4 . Because 3

8 · 2 + 1
4 = 1, Inequality (20) can-

not hold. Therefore, the low-cost non-pivot edges are not modified in this case, and we have
Mi,j,t = Mi,k,t = Mj,k,t = 0. Accordingly, by always defining Bi,j,t, Bi,k,t, Bj,k,t

def
= 0, we show

Lemma 7.3 for this case.
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B.7.2 (d, d, r)-same-triangles

W.l.o.g., we assume (i, j) and (i, k) are deterministic. This implies that Mj,k,t = 0. Because
of Lemma 4.4 and ℓ∗(y, i, j) = ℓ∗(y, i, k), the input distances of (i, j) and (i, k) equal dℓ∗(y,i,j).
Therefore, Mi,j,t (or Mi,k,t) equals 1 only when the pivot is k (resp., j), it is low-cost and the
random distance x′(j, k) > dℓ∗(y,i,j), i.e.,

Mi,j,t = 1(k is the pivot vertex) · 1((i, j) ∈ EL) · 1(x′(j, k) > dℓ∗(y,i,j)) ,

Mi,k,t = 1(j is the pivot vertex) · 1((i, k) ∈ EL) · 1(x′(j, k) > dℓ∗(y,i,j)) .

Note that triangles in this class with at least two edges in E can be divided into the following three
cases: (1) the random edge is in E∅, (2) a deterministic edge is in E∅, and (3) all three edges are
in E. Next, we shall discuss these three cases to prove Lemma 7.3 for this class of triangles.

Case 1: the random edge is in E∅. According to the CCDF (19) of the random distance, the
probability that x′(j, k) > dℓ∗(y,i,j) is

yℓ∗(i,j)−1(j, k) ≤ yℓ∗(i,j)−1(i, j) + yℓ∗(i,j)−1(i, k) (LP constraint (1))

= yℓ∗(i,j)−1(i, j) + yℓ∗(i,k)−1(i, k) .

Therefore, in this case,∑
(i′,j′)∈t

E[Mi′,j′,t] ≤
yℓ∗(i,j)−1(i, j) + yℓ∗(i,k)−1(i, k)

3
·
(
1((i, j) ∈ EL) + 1((i, k) ∈ EL)

)
.

Accordingly, when the corresponding edge is non-pivot, we define Bi,j,t, Bi,k,t, Bj,k,t as follows:

Bi,j,t
def
=


2 if (i, j) ∈ EL

1 if (i, j) ∈ EHD

0 if (i, j) ∈ EHR

, Bi,k,t
def
=


2 if (i, k) ∈ EL

1 if (i, k) ∈ EHD

0 if (i, k) ∈ EHR

, Bj,k,t
def
= 0

Because of Lemma 5.3 and 5.4, this definition implies the first bullet of Lemma 7.3:∑
(i′,j′)∈t

E[Bi′,j′,t] · c∗(i′, j′) ≥
1 + 1((i, j) ∈ EL)

3
· yℓ∗(i,j)−1(i, j) +

1 + 1((i, k) ∈ EL)

3
· yℓ∗(i,k)−1(i, k)

≥ 1((i, j) ∈ EL) + 1((i, k) ∈ EL)

3
·
(
yℓ∗(i,j)−1(i, j) + yℓ∗(i,k)−1(i, k)

)
≥

∑
(i′,j′)∈t

E[Mi′,j′,t] .

Further, when the edge (i, j) (or (i, k)) is non-pivot, one of the pivot edges in the triangle is random.
Because of Corollary B.4, the probability that i, j (or i, k) are then partitioned into different sets
on line 26 is at least 1

6 , which is at least
1
12 ·Bi,j,t if (i, j) ∈ EL

1
6 ·Bi,j,t if (i, j) ∈ EHD

1 ·Bi,j,t if (i, j) ∈ EHR

and


1
12 ·Bi,k,t if (i, k) ∈ EL

1
6 ·Bi,k,t if (i, k) ∈ EHD

1 ·Bi,k,t if (i, k) ∈ EHR

Hence, this definition satisfies the second bullet of Lemma 7.3 for this case.
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Case 2: one deterministic edge is in E∅. W.l.o.g., we assume that the deterministic edge
(i, k) ∈ E∅, which implies Mj,k,t = 0 and yℓ∗(i,j)−1(i, k) = yℓ∗(i,k)−1(i, k) ≤ 1−∆yℓ∗(i,k)−1(i, k) <

1
4 .

According to the CCDF (18) of the random distance, the probability that x′(j, k) > dℓ∗(y,i,j) is(
4 · yℓ∗(i,j)−1(j, k)− 1

)+
3

≤
(
4 · (yℓ∗(i,j)−1(i, j) + yℓ∗(i,j)−1(i, k))− 1

)+
3

(LP constraint (1))

≤
4 · yℓ∗(i,j)−1(i, j)

3
.

Therefore, in this case, ∑
(i′,j′)∈t

E[Mi′,j′,t] ≤
4 · 1((i, j) ∈ EL) · yℓ∗(i,j)−1(i, j)

9
.

Accordingly, when the corresponding edge is non-pivot, we define Bi,j,t, Bi,k,t, Bj,k,t as follows:

Bi,j,t
def
=

{
4/3 if (i, j) ∈ EL

0 otherwise
, Bi,k,t, Bj,k,t

def
= 0 .

Because of Lemma 5.3, this definition implies the first bullet of Lemma 7.3:∑
(i′,j′)∈t∩E

E[Bi,j,t] · c∗(i, j) ≥
4 · 1((i, j) ∈ EL) · yℓ∗(i,j)−1(i, j)

9
≥

∑
(i′,j′)∈t

E[Mi′,j′,t] .

Further, when the edge (i, j) is non-pivot, one of the pivot edges in the triangle is random. Because
of Corollary B.4, the probability that i, j are then partitioned into different sets on line 26 is at
least 1

6 , which is at least 1
8 ·Bi,j,t. Hence, this definition satisfies the second bullet of Lemma 7.3 for

this class of triangles.

Case 3: all three edges are in E. According to the CCDF (4) of the random distance, the
probability that x′(j, k) > dℓ∗(y,i,j) is(

4 · yℓ∗(i,j)−1(j, k)− 1
)+

3
≤

4 · yℓ∗(i,j)−1(j, k)

3
≤

4 · (yℓ∗(i,j)−1(i, j) + yℓ∗(i,j)−1(i, k))

3
(LP constraint (1))

=
4 · (yℓ∗(i,j)−1(i, j) + yℓ∗(i,k)−1(i, k))

3
.

Therefore, in this case,∑
(i′,j′)∈t

E[Mi′,j′,t] ≤
4 · (yℓ∗(i,j)−1(i, j) + yℓ∗(i,k)−1(i, k))

9
·
(
1((i, j) ∈ EL) + 1((i, k) ∈ EL)

)
.

Accordingly, when the corresponding edge is non-pivot, we define Bi,j,t, Bi,k,t, Bj,k,t as follows:

Bi,j,t
def
=


8/3 if (i, j) ∈ EL

4/3 if (i, j) ∈ EHD

0 if (i, j) ∈ EHR

, Bi,k,t
def
=


8/3 if (i, k) ∈ EL

4/3 if (i, k) ∈ EHD

0 if (i, k) ∈ EHR

, Bj,k,t
def
= 0
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Because of Lemma 5.3 and 5.4, this definition implies

E[Bi,j,t] · c∗(i, j) ≥
4 · (1 + 1((i, j) is L))

9
· yℓ∗(i,j)−1(i, j) ,

E[Bi,k,t] · c∗(i, k) ≥
4 · (1 + 1((i, j) is L))

9
· yℓ∗(i,k)−1(i, k) ,

and thus implies the first bullet of Lemma 7.3:∑
(i′,j′)∈t∩E

E[Bi′,j′,t] · c∗(i′, j′) ≥
4 · (1((i, j) ∈ EL) + 1((i, k) ∈ EL))

9
·
(
yℓ∗(i,j)−1(i, j) + yℓ∗(i,k)−1(i, k)

)
≥

∑
(i′,j′)∈t

E[Mi′,j′,t] .

Further, when the edge (i, j) (or (i, k)) is non-pivot, one of the pivot edges in the triangle is
random. Because of Corollary B.4, the probability i, j (or i, k) are then partitioned into different
sets on line 26 is at least 1

6 , which is at least
1
16 ·Bi,j,t if (i, j) ∈ EL

1
8 ·Bi,j,t if (i, j) ∈ EHD

1 ·Bi,j,t if (i, j) ∈ EHR

and


1
16 ·Bi,k,t if (i, k) ∈ EL

1
8 ·Bi,k,t if (i, k) ∈ EHD

1 ·Bi,k,t if (i, k) ∈ EHR

Hence, this definition satisfies the second bullet of Lemma 7.3 for this case.

B.7.3 (d, d, r)-diff-triangles

W.l.o.g. we assume (i, j) and (i, k) are deterministic, and (i, j) has a lower dominant level, i.e.,
ℓ∗(y, i, j) < ℓ∗(y, i, k) (equivalently, dℓ∗(y,i,j) > dℓ∗(y,i,k)). This implies Mj,k,t = 0. Because of
Lemma 4.4, the input distance of (i, j) (or (i, k)) equals dℓ∗(y,i,j) (resp. dℓ∗(y,i,k)). Therefore, Mi,j,t

(or Mi,k,t) equals 1 only when the pivot is k (resp., j), it is low-cost and the random distance
x′(j, k) ̸= dℓ∗(y,i,j), i.e.,

Mi,j,t = 1(k is the pivot vertex) · 1((i, j) ∈ EL) · 1(x′(j, k) ̸= dℓ∗(y,i,j)) ,

Mi,k,t = 1(j is the pivot vertex) · 1((i, k) ∈ EL) · 1(x′(j, k) ̸= dℓ∗(y,i,j)) .

Note that triangles in this class with at least two edges in E can be divided into the following two
cases: (1) the random edge is in E∅, (2) the random edge is in E. Next, we shall discuss these two
cases to prove Lemma 7.3 for this class of triangles.

Case 1: the random edge is in E∅. According to the CCDF (18) of the random distance, the
probability that x′(j, k) ̸= dℓ∗(y,i,j) is

1−∆yℓ∗(i,j)(j, k) = 1− yℓ∗(i,j)(j, k) + yℓ∗(i,j)−1(j, k)

≤ 1− (yℓ∗(i,j)(i, j)− yℓ∗(i,j)(i, k)) + yℓ∗(i,j)−1(i, j) + yℓ∗(i,j)−1(i, k)

≤ (1−∆yℓ∗(i,j)(i, j)) + 2yℓ∗(i,k)−1(i, k)

Therefore, in this class of triangles,∑
(i′,j′)∈t

E[Mi′,j′,t] ≤
(1−∆yℓ∗(i,j)(i, j)) + 2yℓ∗(i,k)−1(i, k)

3
·
(
1((i, j) ∈ EL) + 1((i, k) ∈ EL)

)
.
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Accordingly, when the corresponding edge is non-pivot, we define Bi,j,t, Bi,k,t, Bj,k,t as follows:

Bi,j,t
def
=


2 if (i, j) ∈ EL

1 if (i, j) ∈ EHD

1 if (i, j) ∈ EHR

, Bi,k,t
def
=


4 if (i, k) ∈ EL

2 if (i, k) ∈ EHD

0 if (i, k) ∈ EHR

, Bj,k,t
def
= 0 .

Because of Lemma 5.3 and 5.4, this definition implies

c∗(i, j) · E[Bi,j,t] ≥
1 + 1((i, j) is L)

3
· (1−∆yℓ∗(i,j)(i, j)) ,

c∗(i, k) · E[Bi,k,t] ≥
1 + 1((i, j) is L)

3
· 2yℓ∗(i,k)−1(i, k) ,

and thus implies the first bullet of Lemma 7.3:∑
(i′,j′)∈t∩E

E[Bi′,j′,t] · c∗(i′, j′) ≥
1((i, j) ∈ EL) + 1((i, k) ∈ EL)

3
·
(
1−∆yℓ∗(i,j)(i, j) + 2yℓ∗(i,k)−1(i, k)

)
≥

∑
(i′,j′)∈t

E[Mi′,j′,t] .

Further, when the edge (i, j) (or (i, k)) is non-pivot, one of the pivot edges in the triangle is
random in E∅. Because of Lemma B.3, the probability that i, j (or i, k) are then partitioned into
different sets on line 26 is at least 1

4 , which is at least
1
8 ·Bi,j,t if (i, j) ∈ EL

1
4 ·Bi,j,t if (i, j) ∈ EHD

1
4 ·Bi,j,t if (i, j) ∈ EHR

and


1
16 ·Bi,k,t if (i, k) ∈ EL

1
8 ·Bi,k,t if (i, k) ∈ EHD

1 ·Bi,k,t if (i, k) ∈ EHR

Hence, this definition satisfies the second bullet of Lemma 7.3 for this case.

Case 2: the random edge is in E. In this case, we always have
∑

(i′,j′)∈t E[Mi′,j′,t] ≤ 2
3 .

Accordingly, when the corresponding edge is non-pivot, we define Bi,j,t, Bi,k,t, Bj,k,t as follows:

Bi,j,t, Bi,k,t
def
= 0 , Bj,k,t

def
= 16/3 .

Because of Corollary 4.3, (j, k) ∈ EHR and thus c∗(j, k) ≥ 3
8 . This definition implies the first bullet

of Lemma 7.3: ∑
(i′,j′)∈t∩E

E[Bi′,j′,t] · c∗(i′, j′) ≥
1

3
· 16
3
· 3
8
=

2

3
≥

∑
(i′,j′)∈t

E[Mi′,j′,t] .

Further, when the edge (j, k) is non-pivot, both pivot edges in the triangle are deterministic but
have different dominant levels. Because of Lemma B.3, the probability that j, k are then partitioned
into different sets on line 26 is 1, which is at least 3

16 · Bj,k,t. Hence, this definition satisfies the
second bullet of Lemma 7.3 for this case.
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B.7.4 (d, r, r)-triangles

W.l.o.g., we assume (j, k) is the deterministic edge. Because of Corollary 4.3, (i, j), (i, k) /∈ EL and
thus Mi,j,t = Mi,k,t = 0. If (j, k) /∈ EL, no low-cost edges are modified in this triangle, and thus
Mj,k,t = 0. Accordingly, by always defining Bi,j,t = Bi,k,t = Bj,k,t = 0, we show Lemma 7.3 for the
case (j, k) /∈ EL.

Next, we consider the case (j, k) ∈ EL. It is clear to upper bound Mi,j,t by 1 and thus∑
(i′,j′)∈t

E[Mi′,j′,t] ≤
1

3
.

Since EL ⊆ E, (j, k) ∈ E. Because E is k-partite, at least one of (i, j) and (i, k) is in E. W.l.o.g.,
we assume (i, j) ∈ E. We shall prove Lemma 7.3 by discussing whether (i, k) ∈ E.

Case 1: (i, k) /∈ E. Because (i, j) is random in E and because of Corollary 4.3, (i, j) ∈ EHR and
thus c∗(i, j) ≥ 3

8 . Accordingly, when the corresponding edge is non-pivot, we define Bi,j,t, Bi,k,t, Bj,k,t

as follows:

Bi,j,t
def
= 8/3, Bi,k,t, Bj,k,t

def
= 0 ,

which implies the first bullet of Lemma 7.3 for this class of triangles:∑
(i′,j′)∈t∩E

E[Bi′,j′,t] · c∗(i′, j′) ≥
1

3
· 8
3
· 3
8
=

1

3
≥

∑
(i′,j′)∈t

E[Mi′,j′,t] .

Further, when the edge (i, j) is non-pivot, one of the pivot edges in the triangle is random in E∅.
Because of Lemma B.3, the probability that i, j are then partitioned into different sets on line 26 is
at least 1

4 , which equals 3
32 ·Bi,j,t. Because (i, j) ∈ EHR, this definition satisfies the second bullet of

Lemma 7.3 for this case.

Case 2: (i, k) ∈ E. Because (i, j) and (i, k) are random in E and because of Corollary 4.3,
(i, j), (i, k) ∈ EHR and thus c∗(i, j), c∗(i, k) ≥ 3

8 . Accordingly, when the corresponding edge is
non-pivot, we define Bi,j,t, Bi,k,t, Bj,k,t as follows:

Bi,j,t, Bi,k,t
def
= 4/3, Bj,k,t

def
= 0 ,

which implies the first bullet of Lemma 7.3 for this class of triangles:∑
(i′,j′)∈t∩E

E[Bi′,j′,t] · c∗(i′, j′) ≥
1

3
· 4
3
· 3
8
+

1

3
· 4
3
· 3
8
=

1

3
≥

∑
(i′,j′)∈t

E[Mi′,j′,t] .

Further, when the edge (i, j) (or (i, k)) is non-pivot, one of the pivot edges in the triangle is random
in E. Because of Lemma B.3, the probability that i, j (or i, k) are then partitioned into different
sets on line 26 is at least 1

6 , which equals 1
8 ·Bi,j,t (resp., 1

8 ·Bi,k,t). Because (i, j), (i, k) ∈ EHR, this
definition satisfies the second bullet of Lemma 7.3 for this case.
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